
	

	
	
	
	
	

	

	

ExtremeEarth

H2020 - 825258

Deliverable

D3.5

Evaluation framework for linked geospatial data

systems

Antonis Troumpoukis, Nefeli Prokopaki-Kostopoulou,
Giannis Mouchakis, Babis Kostopoulos, Angelos

Charalambidis, Stasinos Konstantopoulos,
Dimitris Bilidas, Theo�los Ioannidis, Michail Mitsios,

George Smyris and Manolis Koubarakis

December 31, 2021

Status: FINAL
Scheduled Delivery Date: 31 December 2021

H2020-825258

Executive Summary

This deliverable is developed in the context of WP3, objective of which is to develop a set of tools
for querying, integration and extreme analytics for the big information and knowledge that was
mined from Copernicus data and other auxiliary data sources using the techniques developed in
WP2. This information and knowledge was encoded as linked geospatial data and was integrated
with other open linked data sources to be demonstrated in the two use cases of ExtremeEarth.

Deliverable D3.5 concerns Task 3.5 evaluation framework for big linked geospatial data systems
(months 12-36). In this task we develop an evaluation platform for the techniques and implemented
systems developed in Tasks 3.1-3.4. The framework that we develop is based on the benchmark
Geographica of partner UoA, which is the state-of-the-art benchmark for geospatial RDF stores
that takes into account the most recent advances in this area. We extend Geographica so that it can
be used to evaluate the performance of the transformation, interlinking, querying and integration
systems of Tasks 3.1-3.4. Parts of the data sources and scenarios of the extension of Geographica
come from the two use cases of the project. The new version of Geographica is made available in
the new version of the KOBE Benchmarking Engine (partner NCSR participates in H2020 project
HOBBIT and has developed KOBE).

As mentioned in both D3.7 and D3.8, Deliverable D3.5 also contains the �nal experimental evalu-
ation of Strabo2 (developed in T3.3) and Semagrow (developed in T3.4).

D3.5 Evaluation framework for linked geospatial data systems i

H2020-825258

Document Information

Contract Number H2020 - 825258 Acronym ExtremeEarth
Full title ExtremeEarth
Project URL http://earthanalytics.eu/

EU Project O�cer Riku Leppänen

Deliverable Number D3.5 Name Evaluation framework for linked geospatial
data systems

Task Number T3.5 Name Evaluation framework for big linked geospatial
data systems

Work package Number WP3
Date of delivery Contract 31 December 2021 Actual 31 December 2021
Status Draft � Final 2�
Nature Prototype 2� Report �
Distribution Type Public 2� Restricted �
Responsible

Partner

NCSR-D

QA Partner UoA

Contact Person Stasinos Konstantopoulos
Email konstant@iit.demokritos.grPhone +30 210 650

3194
Fax n/a

D3.5 Evaluation framework for linked geospatial data systems ii

http://earthanalytics.eu/

H2020-825258

Project Information

This document is part of a research project funded by the IST Programme of the Commission of
the European Communities as project number H2020-825258. The bene�ciaries in this project are
the following:

D3.5 Evaluation framework for linked geospatial data systems iii

H2020-825258

Partner Acronym Contact

National and Kapodistrian
University of Athens

Department of Informatics
and Telecommunications

(Coordinator)

UoA Prof. Manolis Koubarakis
National and Kapodistrian University of

Athens
Dept. of Informatics and Telecommunications

Panepistimiopolis, Ilissia, GR-15784
Athens, Greece

Email: (koubarak@di.uoa.gr)
Tel: +30 210 7275213, Fax: +30 210 7275214

VISTA Geowissenschaftliche
Fernerkundung GmbH

VISTA

Heike Bach
Email: (bach@vista-geo.de)

The Arctic University of
Norway

Deptartment of Physics and
Technology

UiT

Torbjørn Eltoft
Email: (torbjorn.eltoft@uit.no)

University of Trento
Department of Information
Engineering and Computer

Science

UNITN

Lorenzo Bruzzone
Email: (lorenzo.bruzzone@unitn.it)

Royal Institute of Technology

KTH

Seif Haridi
Email: (haridi@kth.se)

National Center for Scienti�c
Research - Demokritos

NCSR-D

Vangelis Karkaletsis
Email: (vangelis@iit.demokritos.gr)

Deutsches Zentrum für
Luft-und Raumfahrt e. V.

DLR

Corneliu Octavian Dumitru
Email: (corneliu.dumitru@dlr.de)

Polar View Earth Observation
Ltd.

PolarView

David Arthurs
Email: (david.arthurs@polarview.org)

METEOROLOGISK
INSTITUTT

METNO

Nick Hughes
Email: (nick.hughes@met.no)

Logical Clocks AB

LC

Jim Dowling
Email: (jim@logicalclocks.com)

United Kingdom Research and
Innovation - British Antarctic

Survey

UKRI-BAS

Andrew Fleming
Email: (ahf@bas.ac.uk)

D3.5 Evaluation framework for linked geospatial data systems iv

H2020-825258

Contents

1 Introduction 1

2 The KOBE Benchmarking Engine 2
2.1 Introduction . 2
2.2 Benchmarking Concepts and Requirements . 3

2.2.1 Data Source Provisioning . 4
2.2.2 Sequential and Concurrent Application of Query Workload 4
2.2.3 Logs Collection and Analysis . 4

2.3 The KOBE System . 5
2.3.1 Deployment Automation . 5
2.3.2 Benchmark and Experiment Speci�cations 7
2.3.3 Experiment Orchestration . 8

2.4 Collecting and Analysing Evaluation Metrics . 8
2.4.1 Collecting the Evaluation Metrics . 8
2.4.2 Visualizing the Evaluation Metrics . 9

2.5 KOBE Extensibility . 11
2.5.1 Benchmarks and Experiments . 12
2.5.2 Dataset Servers and Federators . 12

2.6 Comparison to Related Systems . 13
2.7 Conclusions . 13

3 Linked Geospatial Data Benchmarks 15
3.1 Geographica2 . 15

3.1.1 A benchmarking framework . 15
3.1.2 Real world workload . 15
3.1.3 Synthetic workload . 16
3.1.4 Synthetic generator - StdSynthGen . 16

3.2 Geographica3 CL . 17
3.2.1 General . 17
3.2.2 A distributed geospatial benchmark . 17
3.2.3 Requirements of DistSynthGen . 19
3.2.4 Main features of DistSynthGen . 19
3.2.5 DistSynthGen Queries explained . 20
3.2.6 Usage of DistSynthGen . 21
3.2.7 Triples scaling . 24
3.2.8 Storage/size scaling . 24
3.2.9 Time/generation scaling . 26

3.3 GeoFedBench . 28
3.3.1 Introduction and Motivation . 28
3.3.2 The GSSBench Suite . 28
3.3.3 The GDOBench Suite . 31
3.3.4 Benchmark characteristics . 33

4 Strabo2 Experiments 35
4.1 Query Execution Results . 35
4.2 Evaluating Improvements in Query Execution . 38

4.2.1 Caching of Thematic Tables . 38
4.2.2 Hybrid Translation with Persistent Spatial Index and Partitioning 38
4.2.3 Caching Qualitative Spatial Relations Using JedAI-Spatial 39

4.3 Datasets and Queries from the Use Cases of ExtremeEarth 39

D3.5 Evaluation framework for linked geospatial data systems v

H2020-825258

5 Semagrow Experiments 43
5.1 The Semagrow query federation engine . 43
5.2 Evaluation using GSSBench suite of GeoFedBench 43

5.2.1 Experimental setup . 43
5.2.2 Experimental results . 45

5.3 Evaluation using GDOBench suite of GeoFedBench 51
5.3.1 Experimental setup . 51
5.3.2 Experimental results . 51

5.4 Summary . 53

6 Scale-to-Petabyte experiment 55
6.1 Advances in querying and federating big linked geospatial data 55
6.2 Experimental setup . 56
6.3 Experimental results . 59
6.4 Summary . 61

7 Conclusions 62

Bibliography 63

D3.5 Evaluation framework for linked geospatial data systems vi

H2020-825258

List of Figures

2.1 Information �ow through a KOBE deployment: The user edits con�guration �les
and uses kobectl (the KOBE command-line client) to deploy and execute the bench-
marking experiments, at a level that abstracts away from Kubernetes speci�cs. Ex-
perimental results are automatically collected and visualized using the EFK stack. 7

2.2 Details of a speci�c experiment execution . 10
2.3 Comparison of three experiment executions . 11
2.4 Comparison of all runs of the ls3 query for three experiment executions 11

3.1 Real world dataset characteristics . 16
3.2 Ontology for Points of Interest . 16
3.3 Visualization of the geometric part of the synthetic dataset 17
3.4 Spatial Selection query on Landownerships . 20
3.5 Spatial Join query between Landownerships and States 21
3.6 Dataset creation on the HopsWorks platform . 23
3.7 Single partition �le for LandOwnerships (small hex) on HopsWorks 23
3.8 Scaling of Triples per Feature Class . 25
3.9 Text Storage Scaling . 25
3.10 Parquet + Snappy compression Storage Scaling . 25
3.11 PolarTEP Baseline Con�guration: Driver(2GB, 1vCore), 1 x Executor(4GB, 1vCore) 26
3.12 PolarTEP Medium Con�guration: Driver(4GB, 1vCore), 4 x Executor(4GB, 1vCore) 27
3.13 PolarTEP High Con�guration: Driver(8GB, 2vCore), 8 x Executor(4GB, 1vCore) . 27

4.1 Execution with Varying Number of Executors . 37
4.2 Execution with Varying Size of Input Dataset . 37
4.3 E�ect of Qualitative Cache . 40

6.1 The 10× 10 grid used to partition the data of the dataset. Each cell corresponds to
a GeoSPARQL endpoint. 58

D3.5 Evaluation framework for linked geospatial data systems vii

H2020-825258

List of Tables

3.1 GSSBench suite: Dataset statistics. 30
3.2 GSSBench suite: Queries. 31
3.3 GDOBench suite: Dataset statistics. 32
3.4 GDOBench suite: Queries. 33

4.1 Query Execution Times for Synthetic Dataset Scale 16384 36
4.2 E�ect of Hybrid Translation in Query Execution 39

5.1 Federations used in the evaluation using the GSSBench suite. 44
5.2 Source Selection time (sec): Average (and standard deviation) over 100 query in-

stances per query template (Q1 � Q7). 46
5.3 Source Selection pruning: number of sources selected by the di�erent source selection

methods, average (minimum and maximmum) over 100 query instances per query
template (Q1 � Q7). 47

5.4 Query planning time (sec): Average (and standard deviation) over 100 query in-
stances per query template (Q1 � Q7). 48

5.5 Query execution time (sec): Average (and standard deviation) over 100 query in-
stances per query template (Q1 � Q7). 49

5.6 Error rate: Number of errors divided with the number of queries of each query
template (Q1 � Q7). 49

5.7 Time overhead of the geospatial source selection: Average (and standard deviation)
of the di�erence in total query processing time (in sec) of each geospatial federation
minus the time of its corresponding thematic one, over the successful query instances
of query template Q1 to Q5. A negative measurement indicates that the geospatial
source selection overheads are recovered by faster query planning and execution. Q6
and Q7 are missing from the table since most queries in geo-appr, geo-mbb, and thm

evoke errors during query execution phase. 50
5.8 Experimental results for Q1-3. 52
5.9 Experimental results for Q4. 53

6.1 Federated endpoints used in the experiment. For each endpoint we illustrate the
number of triples (#triples), the number of geometries (#geom), the number of
tags (#tags), the number of land ownerships (#lo), the number of states (#st), and
the number of points of interest (#poi). 57

6.2 Statistics about the federated endpoints used in the experiment. (Total and Average
values of the measurements of Table 6.1). 57

6.3 Information about the queries used in the experiment. For each query we illustrate
the number of triple patterns (#tp), whether the query is a geospatial selection
or a geospatial join (type), the geospatial relation of the �lter (relation), and for
geospatial selections, the area of the parameterized shape that appears in the query
w.r.t. the total area (area). 58

6.4 Experimental results. We illustrate source selection time, query planning time and
query execution time, for each experiment execution. Each experiment is charac-
terized by its delay (namely 0s (no delay), 1s, 10s, 1m, 5m, and 10m). All times
are average times of 3 runs, and are displayed in seconds. Moreover, we illustrate
the number of sources that appear in the execution plan (#s), and the number of
results of each query (#r), which are the same for all experiment executions. . . . 60

6.5 Experimental results. Summary of Table 6.4. We illustrate average source selection
time according to the number of the triple patterns of the query, average planning
time according to the number of sources that appear in the plan, average query
execution time according to the endpoint delay. 60

D3.5 Evaluation framework for linked geospatial data systems viii

H2020-825258

D3.5 Evaluation framework for linked geospatial data systems ix

H2020-825258

1. Introduction

This deliverable is developed in the context of WP3, objective of which is to develop a set of tools
for querying, integration and extreme analytics for the big information and knowledge that was
mined from Copernicus data and other auxiliary data sources using the techniques developed in
WP2. This information and knowledge was encoded as linked geospatial data and was integrated
with other open linked data sources to be demonstrated in the two use cases of ExtremeEarth.

Deliverable D3.5 concerns Task 3.5 evaluation framework for big linked geospatial data systems
(months 12-36). In this task we develop an evaluation platform for the techniques and implemented
systems developed in Tasks 3.1-3.4. The framework that we develop is based on the benchmark
Geographica of partner UoA, which is the state-of-the-art benchmark for geospatial RDF stores
that takes into account the most recent advances in this area. We extend Geographica so that it can
be used to evaluate the performance of the transformation, interlinking, querying and integration
systems of Tasks 3.1-3.4. Parts of the data sources and scenarios of the extension of Geographica
come from the two use cases of the project. The new version of Geographica is made available in
the new version of the KOBE Benchmarking Engine (partner NCSR participates in H2020 project
HOBBIT and has developed KOBE).

As mentioned in both D3.7 and D3.8, Deliverable D3.5 also contains the �nal experimental evalu-
ation of Strabo2 (used for querying big linked geospatial data and developed in T3.3) and Sema-
grow (used for federating big linked geospatial data and developed in T3.4). In these experiments,
we combine the cluster-level scalability o�ered by Strabo2 with Semagrow's ability to transpar-
ently federate multiple such clusters. The aim is to prove that the combination of these key
ExtremeEarth technologies can bring geospatial linked data query processing to the order of mag-
nitude of petabytes.

The rest of the deliverable is organized as follows:

• In Chapter 2 we present the new version of the KOBE Benchmarking Engine, which is the
�rst part of the evaluation framework of Task T3.5. KOBE uses modern containerization
and Cloud computing technologies for automating the process of deployment, initialization,
experiment execution, and results presentation.

• In Chapter 3 we present a series of new benchmarks that extend Geographica and comprise
the second part of the evaluation framework of Task T3.5. These experiments are Geo-
graphica2 (for single node linked geospatial stores), Geographica3 (for distributed big linked
geospatial stores), and GeoFedBench (for federated linked geospatial data).

• In Chapter 4 we present the �nal experimental evaluation of Strabo2 using the Geographica3
benchmark. Apart from this, we evaluate speci�c aspects of the system, and we present the
execution times for real world queries and datasets from the use cases.

• In Chapter 5 we present the �nal experimental evaluation of Semagrow using the GeoFed-
Bench benchmark (which contains datasets and queries from the Food Security use case).

• In Chapter 6 we perform an experiment with data and queries from Geographica2 and a
federation of a large number of endpoints to demonstrate scalability to the PB level.

• Finally, in Chapter 7 we conclude the deliverable.

D3.5 Evaluation framework for linked geospatial data systems 1

H2020-825258

2. The KOBE Benchmarking Engine

In the SPARQL query processing community, as well as in the wider databases community, bench-
mark reproducibility is based on releasing datasets and query workloads. However, this paradigm
breaks down for federated query processors, as these systems do not manage the data they serve to
their clients but provide a data-integration abstraction over the actual query processors that are in
direct contact with the data. As a consequence, benchmark results can be greatly a�ected by the
performance and characteristics of the underlying data services. This is further aggravated when
one considers benchmarking in more realistic conditions, where internet latency and throughput
between the federator and the federated data sources is also a key factor.

In this chapter we present KOBE [8, 9], a benchmarking system that leverages modern container-
ization and Cloud computing technologies in order to reproduce collections of data sources. In
KOBE, data sources are formally described in more detail than what is conventionally provided,
covering not only the data served but also the speci�c software that serves it and its con�guration
as well as the characteristics of the network that connects them. KOBE provides a speci�cation
formalism and a command-line interface that completely hides from the user the mechanics of pro-
visioning and orchestrating the benchmarking process on Kubernetes-based infrastructures; and of
simulating network latency. Finally, KOBE automates the process of collecting and comprehending
logs, and extracting and visualizing evaluation metrics from these logs.

2.1 Introduction

Data federation and distributed querying are key technologies for the e�cient and scalable consum-
ing of data in the decentralized and dynamic environment of the Semantic Web. Several federation
systems have been proposed [18, 5, 3], each with their own characteristics, strengths, and limita-
tions. Naturally, consistent and reproducible benchmarking is a key enabler of the relevant research,
as it allows these characteristics, strengths, and limitations to be studied and understood.

There are several benchmarks that aim to achieve this, but, similarly to the wider databases com-
munity, to release a benchmark amounts to releasing datasets, query workloads, and, at most, a
benchmark-speci�c evaluation engine for executing the query load [6, 17, 16]. Research articles
using these benchmarks need to specify what software has been used to implement the SPARQL
endpoints, how it has been con�gured and distributed among hardware nodes, and the character-
istics of these nodes and of the network that connects them to the federation system. Reproducing
an experiment from such a description is a challenging and tedious task. Based on our own ex-
perience with federated query processing research we have been looking for ways to minimize the
e�ort required and the uncertainty involved in replicating experimental setups from the federated
querying literature. Our �rst step in that direction was to complement a benchmark we previously
proposed [19] with Docker images of the populated triple store installations and of the federation
systems used for that work.

In this chapter we present KOBE, an open-source1 benchmarking engine that reads benchmark
de�nitions and handles the distributed deployment of the data sources and the actual execution
of the experiment. This includes instantiating a data source from dataset �les, con�guring and
initializing the federation engine, connecting them into a virtual network with controlled charac-
teristics, executing the experiment, and collecting the evaluation results. The main objective of
KOBE is to provide a generic and controlled benchmarking framework where any combination of
datasets, query loads, querying scenarios, and federation engines can be tested. To meet this goal,
KOBE leverages modern Cloud-native technologies for the containerization and orchestration of
di�erent components.

1See https://github.com/semagrow/kobe

D3.5 Evaluation framework for linked geospatial data systems 2

https://github.com/semagrow/kobe

H2020-825258

In this chapter we will �rst introduce the core concepts of a federated query processing experiment
and the requirements for consistently and reproducibly carrying out such experiments (Section 2.2)
and then present KOBE, its system components and how experiments are provisioned and orches-
trated (Section 2.3). We then discuss how logs are collected and evaluation metrics visualized (Sec-
tion 2.4), and how users can extend the library of benchmarks and federation engines to prepare
their own experiments (Section 2.5). We close with a comparison to related systems (Section 2.6),
conclusions and future work (Section 2.7).

2.2 Benchmarking Concepts and Requirements

We start by discussing the requirements for a benchmarking experiment of a federated query
processor. First, we brie�y introduce the main concepts of a federated query processing experiment:

Data source: An endpoint that processes queries. A data source is characterized by a dataset
label, with data sources characterized by the same dataset serving the exact same data.

Benchmark: A collection of data sources, the latency and throughput of these data sources, and
a list of query strings. Benchmarks are de�ned independently of the federator that is being
benchmarked.

Federator: A federated query processor that provides a single endpoint to achieve uniform and
integrated access to the data sources.

Experiment run: A speci�c experiment, where (a) a speci�c federator has been con�gured to be
able to connect to the data sources foreseen by the benchmark; and (b) the query load
foreseen by the benchmark has been applied to the federator.

Experiment: The repetition of multiple runs of the same benchmark. An experiment is stateful,
in the sense that the federator and data source instances are not terminated and maintain
their caches and, in general, their state between runs.

Having these elements in place allows for the following tests, commonly used to evaluate query
processing systems in general and federated query processing systems in particular:

• Comparing the �rst run for a query against subsequent runs; to understand the e�ect of
caching.

• Observing if performance degrades for large numbers of runs by comparison to smaller num-
bers of runs; to understand if there are memory leaks and other instabilities.

• Observing if performance degrades for large numbers of experiments executed concurrently;
to perform stress-testing.

• Comparing the performance of the same federation engine, on the same datasets, over dif-
ferent data sources; to understand the e�ect of current load, implicit response size limits,
allocated memory, and other speci�cs of the query processing engines that implement the
data sources.

• Comparing the performance of di�erent federation engines on the same experiment; to eval-
uate federation engines.

Based on the above, we will now proceed to de�ne the requirements for a benchmarking system
that supports automating the benchmarking process.

D3.5 Evaluation framework for linked geospatial data systems 3

H2020-825258

2.2.1 Data Source Provisioning

In order to reliably reproduce evaluation results, there are several parameters of the data source
implementation that need to be controlled as they a�ect evaluation metrics. These include the
software used to implement the SPARQL endpoint and its con�guration, the memory, processing
power, disk speed of the server where it executes, the quality of the network connection between
the data server and the federation engine, etc.

Replicating a speci�c software stack and its con�guration can be captured by virtualization and
containerization technologies, so we require that a benchmarking engine use recipes (such as a
Docker�le for Docker containers) that prepare each endpoint's execution environment.

The characteristics of the computing infrastructure where the data service executes and of the
network connection between the data service and the federation engine can be naturally aggregated
as the latency and throughput at which the federation engine receives data from it. So, one
requirement from benchmarking engines is that latency and throughput can be throttled to a
maximum, although other conditions might make a data service even less responsive than these
maxima: e.g., a data source might be processing an extremely demanding query or might be serving
many clients in a stress test scenario.

Based on this observation, we require that benchmarking engines allow the experiment description
to include the latency and throughput between the data sources and the federation. And, in
fact, that these parameters are speci�c to each data source. Technically, this requires that the
architecture foresees a con�gurable proxy between the federator and each data source, so that each
experiment can set this parameter to simulate the real behaviour of SPARQL query processors.

Naturally, this is in addition to the obvious requirement to control the data served and the way
that data is distributed between data services.

2.2.2 Sequential and Concurrent Application of Query Workload

The benchmarking engine should automate the process of applying a query load to the federation
engine. The queries that make up the query load should be applied either sequentially to evaluate
performance on di�erent queries or concurrently to stress-test the system.

Technically, a benchmarking system should include an orchestrator that can read such operational
parameters from the experiment de�nition and apply them when serving as a client application for
the federation engine.

2.2.3 Logs Collection and Analysis

One important requirement of a benchmarking system is that the experimenter can have easy
access on several statistics and key performance indicators of each conducted experiment. An
e�ective presentation of such indicators can o�er to the experimenter the ability to compare the
performance of di�erent setups of the same benchmark (e.g., di�erent federators or data sources)
and to draw conclusions for a speci�c setup by examining time measurements for each phase of
the query processing and several other metrics.

Metrics that are important for the experimenter to analyze the e�ectiveness of a federator in a
speci�c benchmark, include the following:

D3.5 Evaluation framework for linked geospatial data systems 4

H2020-825258

• The number of returned results can be used to validate the correctness of the query processing
by verifying that the federator returns the expected number of results. Naturally, this valida-
tion is incomplete as the results might have the correct cardinality and still be di�erent from
the correct ones. However, many errors can be very e�ciently caught by simply comparing
cardinalities before proceeding to the detailed comparison.

• The total time to receive the complete result set indicates how the engine performs overall from
the perspective of the client. This is the most common key indicator that most benchmarks
consider.

• Although di�erent federated query processing architectures have been proposed, there is
some convergence on source selection, query planning, and query execution as beeing the
main query processing phases. Regardless of whether these phases execute sequentially or
are adaptive and their execution is interwined, the breakdown of the query processing time
into phases provides the experimenter with insights regarding the e�ciency of the federation
engine and how it can be improved.

• The number of sources accessed during processing a speci�c query can be used to evaluate the
e�ectiveness of source selection in terms of excluding redundant sources from the execution
plan.

The aforementioned key performance indicators can be computed by di�erent pieces of software
during an experiment execution. For instance, the �rst two metrics of the above list should be
computed by the evaluator (i.e., the software that poses the queries to the federator), while the
last two metrics can be computed only by the federation engine itself. In order for these metrics
to be available to the experimenter, the benchmarking system must collect and process the log
lines emitted by the federation engine and the other components. This will produce an additional
requirement on the compatible format of the log lines of the systems under test.

2.3 The KOBE System

The KOBE Benchmarking Engine (KOBE) is a system that aims to provide an extensible platform
to facilitate benchmarking on federated query processing. It was designed with the following
objectives in mind:

1. to ease the deployment of complex benchmarking experiments by automating the tedious
tasks of initialization and execution;

2. to allow for benchmark and experiment speci�cations to be reproduced in di�erent environ-
ments and be able to produce comparable and reliable results;

3. to provide to the experimenter the reporting that is identi�ed by the requirements in Sec-
tion 2.2.

In the following sections we will present the architecture and components of KOBE and its key
features.

2.3.1 Deployment Automation

One of the major tasks that KOBE undertakes is the deployment, distribution and resource allo-
cation of the various systems (i.e., the database systems, the federator and others) that participate

D3.5 Evaluation framework for linked geospatial data systems 5

H2020-825258

on a speci�c experiment. In order to achieve this task, KOBE employs Cloud-native technolo-
gies to facilitate the deployment on cloud infrastructures. Each system is deployed in an isolated
environment with user-de�ned computational resources and network bandwidth. In particular,
KOBE leverages containerization technologies to support the deployment of systems with di�er-
ent environments and installation requirements. An immediate consequence of employing those
technologies is that KOBE is open and can be extended with arbitrary federators and database
systems.

KOBE consists of three main subsystems that control three aspects of the benchmarking process:

• The deployment subsystem that is responsible for deploying and initializing the components
required by an experiment. This subsystem handles the allocation of computational resources
for each component.

• The networking subsystem that is responsible for connecting the di�erent components of an
experiment and imposes the throughput and latency limitations described by the benchmark.

• The logging subsystem that manages the logs produced by the several components (i.e, the
data sources, federators and evaluators) and produces meaningful diagrams and graphs about
the benchmarking process.

KOBE relies on Kubernetes2 to allocate cluster resources for the benchmark execution. It de-
ploys ephemeral containers with the individual components of a benchmarking experiment. The
orchestration of that deployment and the communication with the underlying Kubernetes cluster is
performed by the KOBE operator. The KOBE operator runs as a daemon and continuously mon-
itors the progress of each running experiment in the cluster. This controller is also responsible for
the interpretation of the experiment speci�cations (see Subsection 2.3.2) to complete deployment
commands of the components of the experiment.

The network subsystem is controlled by Istio3, a Cloud-native controller that tightly integrates
with Kubernetes to provide a service mesh layer. The KOBE operator utilizes the functionality
of Istio to setup the network connections between the data sources and the federating engine.
The quality of those network connections can be controlled by the KOBE operator to provide the
simulated behavior speci�ed by the speci�c experiment. It is worth noting that those network
links are established in the service mesh layer of the cluster and as a result one can have multiple
experiments with di�erent networking topologies running at the same time in the cluster.

The logging subsystem of KOBE is implemented as an EFK stack, a popular solution for a cen-
tralized, cluster-level logging environment in a Kubernetes cluster. EFK stack consists of (a)
Elasticsearch4, an object store where all logs are stored in a structured form, used for log search-
ing, (b) Fluentd5, a data collector which gathers logs from all containers in the cluster and feeds
them into Elasticsearch, and (c) Kibana6, a web UI for Elasticsearch, used for log visualization.
Since the metrics of our interest are produced from the federator and the evaluator, and, as we
will see in Section 2.4, these logs are of a speci�c form, Fluentd is con�gured to parse and to
keep only the logs of these containers using a set of regular expression patterns for each type of
KOBE-speci�c logs.

Figure 2.1 illustrates the relationships between the individual components and the information �ow
through this architecture. In a typical work�ow, the user uses kobectl (the KOBE command-line
client) to send commands to the KOBE operator. The operator, itself deployed as a container in
the Kubernetes cluster, communicates with the Kubernetes API and with Istio in order to deploy

2cf. https://kubernetes.io
3cf. https://istio.io
4cf. https://www.elastic.co/elasticsearch
5cf. https://www.fluentd.org
6cf. https://www.elastic.co/kibana

D3.5 Evaluation framework for linked geospatial data systems 6

https://kubernetes.io
https://istio.io
https://www.elastic.co/elasticsearch
https://www.fluentd.org
https://www.elastic.co/kibana

H2020-825258

Figure 2.1: Information �ow through a KOBE deployment: The user edits con�guration �les and uses kobectl (the
KOBE command-line client) to deploy and execute the benchmarking experiments, at a level that abstracts away
from Kubernetes speci�cs. Experimental results are automatically collected and visualized using the EFK stack.

the corresponding containers and establish the network between them. Moreover, a Fluentd logging
agent is attached to each related container in order to collect the respective log output. The user
also uses kobectl to provide a query load to the evaluator. The query evaluator is also deployed as
a containerized application and is responsible for applying the query load to the federator and for
measuring the latter's response.

During the execution of the experiment, Fluentd collects the log output from the evaluator, and
parses it to extract evaluation metrics which are stored in Elasticsearch. If the federation engine is
KOBE-aware, then it also produces log lines following the syntax understood by Fluentd so that
�ne-grained metrics about the di�erent stages of the overall query processing are also computed
and stored in Elasticsearch. The user connects to Kibana to see visualizations of these metrics,
where we have prepared a variety of panels speci�cally relevant to benchmarking federated query
processors.

2.3.2 Benchmark and Experiment Speci�cations

An important aspect of benchmarking is the ability to reproduce the experimental results of a
benchmark. KOBE tackles this important issue by de�ning declarative speci�cations of the bench-
marks and the experiments. Those descriptions can be serialized in a human-readable format (we
use YAML as the markup language) and shared and distributed as artifacts.

These speci�cations are grouped around the various components of an experiment including the
benchmark, the evaluator, the data source systems, the data federator and the network topology.
Typically, those speci�cations are partitioned in a series of �les; each �le includes informations
about di�erent elements of the experiment. For example, one speci�cation describes a speci�c
federator and a di�erent speci�cation includes information about the set of datasets and querysets.

The main idea of this organization is that each speci�cation can be provided by a di�erent role. For
example, the federator (resp. dataset server) speci�cation should be provided by the implementor
of the federator (resp. dataset server). These speci�cations include, for example, details about

D3.5 Evaluation framework for linked geospatial data systems 7

H2020-825258

the correct initialization of a federation engine. Moreover, the benchmark speci�cation should
be provided by the benchmark designer and the more speci�c details such as the computational
resources and the network topology by the experimenter. The relevant pages of the online KOBE
manual7 give details about these parameters.

It is worth noting that the speci�cations are declarative in the sense that they describe the desired
outcome rather than the actual steps one needs to follow to reproduce the experiment. The KOBE
operator interprets these speci�cations as the necessary interactions with Kubernetes and Istio to
deploy an experiment.

2.3.3 Experiment Orchestration

The KOBE operator is continuously monitoring for new experiment speci�cations that are sub-
mitted to KOBE by the user via a command-line client application. Upon a new experiment
submission, the KOBE operator compiles new deployments for the data sources. The data sources
consists of a list of dataset �les, that is the serializable content of the dataset, and speci�cations
about the database system that will serve this dataset. The deployment of a data source is per-
formed in two phases: in the �rst phase the data �les are downloaded and imported into the
database system and in the second phase the system is con�gured and started for serving.

When all data sources are ready for serving, the federating engine is started. Similarly, the feder-
ating engine is deployed in two phases. In the �rst phase, the federation of the speci�c instances of
data sources is established. This includes the speci�c initialization process that a federation engine
might need. For example, some engines need the generation of a set of metadata that depend
on the speci�c datasets that they federate. The second phase start the actual federation service.
After that, the network connections are established and the network quality characteristics are
con�gured.

In that stage the experiment is ready to proceed with querying the federation. This is accomplished
by an evaluator component that reads the query set from the benchmark speci�cation and starts
sending the queries to the endpoint of the federator. The evaluator is just another container
that is deployed in the cluster. During the query evaluation, potential logs that are produced by
the federation engine and the evaluator are collected and visualized to the user. The experiment
completes when the evaluator �nished with all the queries.

2.4 Collecting and Analysing Evaluation Metrics

In Section 2.2.3 we stipulated that benchmarking engines should include a mechanism that collects
and analyzes the logs from multiple containers in order to compute evaluation metrics, and to
present them to the experimenter in an intuitive way.

2.4.1 Collecting the Evaluation Metrics

In KOBE, the following benchmarking metrics are treated: the duration of the query processing
phases (source selection, planning, and execution); the number of sources accessed during a query
evaluation from the federator; the total time to receive the complete result set of a query; and
the number of the returned results of a query. We assume that the federator and the evaluator
calculate these metrics and produce a corresponding log message for each metric.

7https://semagrow.github.io/kobe/references/api

D3.5 Evaluation framework for linked geospatial data systems 8

https://semagrow.github.io/kobe/references/api

H2020-825258

Notice, though, that many executions of several experiments can result in multiple query eval-
uations. As a result, many log messages that contain the same metric can appear. In order to
di�erentiate between these query evaluations and to collect all logs that refer to the same query
that belongs to a speci�c run of an experiment, each log message should also provide the following
information:

Experiment name: This information is used to identify in which experiment the given query
evaluation belongs.

Start time of the experiment: Since one experiment can be executed several times, this infor-
mation is used to link to the given query evaluation with a speci�c experiment execution.

Query name: Each query has a unique identi�cation name in an experiment. This information
is used to refer to the name of the query in the experiment.

Run: Each experiment has several runs, meaning that the evaluation of a query happens multiple
times in a speci�c experiment execution. This information identi�es in which run of the
experiment the given query evaluation belongs.

An important problem that arises is that this information is only available to the evaluator and
cannot be accessed by the federator directly. Any heuristic workarounds that try to connect the
evaluator log to the federator log using, for instance, the query strings would not work, as query
strings are not unique. Especially in stress-testing scenarios, the exact same query string might
be simultaneously executed multiple times, so that a combination of query strings and timestamps
would not be guaranteed to work either. To work around this problem, the KOBE evaluator
uses SPARQL comments to pass the query experiment id to the federator, and the latter includes
those in its logs. Then, the federator can retrieve this information by parsing this comment. This
approach has the advantage that even if a federation engine has not been modi�ed to produce log
lines that provide this information, the query string is still in a valid, standard syntax and the
comment is ignored. The �ne-grained time to complete each step in the typical federated query
processing pipeline cannot be retrieved, but the experiment can proceed with the end-to-end query
processing measurements provided by the evaluator.

2.4.2 Visualizing the Evaluation Metrics

In this subsection, we describe the visualization component of KOBE. In particular, we present
the three available dashboards. For every dashboard we provide some screenshots of the graphs
produced for some experiment runs.

Details of a speci�c experiment execution

The dashboard of Figure 2.2 focuses on a speci�c experiment execution. It comprises:

1. Time of each phase of the query processing for each query of the experiment.

2. Total time to receive the complete result set for each query of the experiment.

3. Number of sources accessed for each query of the experiment.

4. Number of returned results for each query of the experiment.

D3.5 Evaluation framework for linked geospatial data systems 9

H2020-825258

Figure 2.2: Details of a speci�c experiment execution

The �rst and the third visualizations are obtained from the logs of the federator engine, if available.
The second and the fourth visualizations are obtained from the logs of the evaluator, so they
are available even for federators that do not provide KOBE-speci�c logs. The values in each
visualization can be also exported in a CSV �le for further processing.

As an example, we consider an experiment execution for the life-science (ls) query set of the
FedBench benchmark for a development version of the Semagrow federation engine. This visual-
ization can help us, for instance, to observe that the query execution phase of the federation engine
dominates the overall query processing time in all queries of the benchmark except ls4.

Comparisons of experiment runs

The dashboards depicted in Figure 2.3 and Figure 2.4 can be used to draw comparisons between
several runs in order to directly compare di�erent con�gurations of a benchmark. The dashboard
of Figure 2.3 can be used for comparing several experiment executions. It consists of two visual-
izations:

1. Total time to receive the complete result set for each experiment execution.

2. Number of returned results for each speci�ed experiment execution.

These visualizations are obtained from the logs of the evaluator. Each bar refers to a single query
of the experiments presented. The dashboard of Figure 2.4 displays the same metrics. The main
di�erence is that it focuses on a speci�c query and compare all runs of this query for several
experiment executions. Contrary to the visualizations of the other two dashboards, each bar refers
to a single experiment run, and all runs are grouped according to the experiment execution they
belong to.

D3.5 Evaluation framework for linked geospatial data systems 10

H2020-825258

Figure 2.3: Comparison of three experiment executions

Figure 2.4: Comparison of all runs of the ls3 query for three experiment executions

Continuing the previous example, we consider three experiment executions that refer to for the life-
science queryset of FedBench; one for the FedX federator and two for the Semagrow federator. In
Figure 2.3 we can observe that all executions return the same number of results for each query, and
that the processing times are similar, with the exception of the ls6 query for the FedX experiment.
Moreover, we can observe that all runs return same number of results, and that the processing
times for each run are similar; therefore any caching used by the federators does not play any
signi�cant role in speeding up this query.

2.5 KOBE Extensibility

It is apparent that a well-designed and well-executed benchmarking experiment needs contributions
from di�erent actors. For example, a benchmark designer may provide a benchmark that is designed
to compare a particular aspect of di�erent federators. On the other hand, the speci�cations of each
federator should ideally be provided by their respective implementors.

KOBE provides various extensibility opportunities and by design welcomes contributions from the
community. In particular, KOBE can be extended with respect to the database systems, federators,
query evaluators and benchmarks that comprise an experiment.

We currently provide speci�cations for two database systems, namely for Virtuoso8 and Strabo29

and for two federators, FedX [18] and Semagrow [3]. These systems have very di�erent requirements

8cf. https://virtuoso.openlinksw.com
9cf. http://strabon.di.uoa.gr

D3.5 Evaluation framework for linked geospatial data systems 11

https://virtuoso.openlinksw.com
http://strabon.di.uoa.gr

H2020-825258

in terms of deployment, providing strong evidence that extending the list of supported RDF stores
will be straightforwrd.

We also provide a range of benchmark and experiment speci�cations for existing federated SPARQL
benchmarks. Currently, the benchmarks that are already bundled with KOBE include the most
widely used LUBM [6] and FedBench [17] benchmark. Moreover, we also include big RDF data
benchmarks LargeRDFBench [16] and OPFBench [19] and geospatial benchmarks GeoFedBench
[20], Geographica [4] and Geographica2 [7].

In the following, we brie�y discuss the process of de�ning these speci�cations and give links to the
more detailed walk-throughs provided in the online KOBE documentation.

2.5.1 Benchmarks and Experiments

Benchmarks are de�ned independently of the federator and comprise a set of datasets and a list
of queries. Datasets are described in terms of the data and the system that should serve them.
Data can be provided as a data dump to be imported in the database systems. For example, RDF
data can be redistributed in the N-Triples format. Each dataset is characterized by its name and
is parameterized by the URL where the data dump can be accessed. Queries of the benchmark are
typically described as strings and annotated with the query language in which they are expressed;
supporting heterogeneous benchmarks where not all data is served by SPARQL endpoints. A
benchmark speci�cation can also include network parameters, such as a �xed delay, or a percentage
on which delay will be introduced as part of fault injection. The online KOBE manual provides
walk-throughs for de�ning a new benchmark10 and for tuning network parameters.11

An experiment that evaluates the performance of a federator over a given benchmark is de�ned
using a strategy for applying the query load to the federator and the number of runs for each query
of the experiment. The experimenter speci�es an experiment by providing a new unique name for
the experiment, the unique name of the benchmark and the federator speci�cation. Moreover,
an experiment includes a speci�c query evaluator, and the number of runs of the experiment.
The query evaluator applies the query load to the federator. The one currently bundled with
KOBE performs sequential querying, meaning that the queries of the benchmark are evaluated
in a sequential manner. The online KOBE manual provides walk-throughs for de�ning a new
experiment12 and for extending KOBE with a new evaluator.13 Furthermore, the manual also
provides a walk-through for de�ning and visualizing new metrics.14

2.5.2 Dataset Servers and Federators

Dataset servers can be also integrated in KOBE. The dataset server speci�cation contains a set of
initialization scripts and a Docker image for the actual dataset server. The initialization scripts
are also wrapped on isolated Docker containers and are used for properly initializing the database
system. Typically, it includes the import of the data dump and indexing of the database. The
dataset server speci�cation may also include other parameters for network connectivity such as the
port and the path to the listening SPARQL endpoint. A walk-through for adding a new dataset
server is provided in the online KOBE manual.15

Federators can also be added to the KOBE system by providing the appropriate speci�cation.
That speci�cation resembles the speci�cation of a ordinary dataset server. The main di�erence is

10https://semagrow.github.io/kobe/use/create_benchmark
11https://semagrow.github.io/kobe/use/tune_network
12https://semagrow.github.io/kobe/use/create_experiment
13https://semagrow.github.io/kobe/extend/add_evaluator
14https://semagrow.github.io/kobe/extend/add_metrics
15https://semagrow.github.io/kobe/extend/add_dataset_server

D3.5 Evaluation framework for linked geospatial data systems 12

https://semagrow.github.io/kobe/use/create_benchmark
https://semagrow.github.io/kobe/use/tune_network
https://semagrow.github.io/kobe/use/create_experiment
https://semagrow.github.io/kobe/extend/add_evaluator
https://semagrow.github.io/kobe/extend/add_metrics
https://semagrow.github.io/kobe/extend/add_dataset_server

H2020-825258

on the initialization phase of a federator. Typically, the initialization of a federator may involve the
creation of histograms from the underlying datasets. Thus, in KOBE, the federator initialization
is performed in two steps: the �rst step extracts needed information from each dataset and the
second step consolidates that information and properly initializes the federator. As in the dataset
server, the initialization processes are provided as containerized Docker images by the implementor
of the federator. A walk-through for adding a federator is provided in the online KOBE manual.16

Federator implementors should also consider a tighter integration in order to bene�t from the
detailed log collection features for reporting measurements that can only be extracted by collecting
information internal to the federator (Section 2.4). Therefore, a log line from a federator should be
enhanced to include the evaluation metrics and the query parameters discussed in Section 2.2.3.
More details about how a federator should be extended to provide detailed logs are given in the
online KOBE manual.17 This tighter integration is not a requirement, in the sense that the overall
end-to-end time to evaluate the query and the number of returned results are provided without
modifying the source code of the federation engine (as we have done in the case of FedX).

2.6 Comparison to Related Systems

To the best of our knowledge, the only benchmark orchestrator that directly targets federated
query processors is the orchestrator distributed with the FedBench suite [17]. As also stated in the
introduction, it is in fact the limitations of the FedBench orchestrator that originally motivated the
work described here. Speci�cally, FedBench does not support the user with either container-based
deployment or collecting federator logs to compute detailed metrics.

HOBBIT [12], on the other hand, is a Docker-based system aiming at benchmarking the complete
lifecycle of Linked Data generation and consumption. Although HOBBIT tooling can support
with collecting logs and visualizing metrics, HOBBIT as a whole is not directly comparable to
KOBE. In the HOBBIT architecture, the benchmarked system is perceived as an opaque container
that the system tasks and measures. KOBE exploits the premise that the benchmarked system
comprises multiple containers one of which (the federator) is tasked and that this one container
communicates with the rest (the data sources). By exploiting these premises, KOBE goes further
than HOBBIT could have gone to automate the deployment of the modules of an experiment and
the control of their connectivity. In other words, KOBE aims at the federated query processing
niche and trades o� generality of purpose for increased support for its particular purpose.

A similar conclusion is also reached when comparing KOBE with scienti�c work�ow orchestra-
tors. Although (unlike HOBBIT and like KOBE) scienti�c work�ow orchestrators are designed to
orchestrate complex systems of containers, they focus on the results of the processing rather on
benchmarking the processors. As such, they lack features such as controlling network latency.

Finally, another unique KOBE feature is the mechanism described in Section 2.4.1 for separating
the logs of the di�erent runs of an experiment. This especially useful in stress-testing scenarios
where the same query is executed multiple times, so that the query string alone would not be
su�cient to separate log lines of the di�erent runs.

2.7 Conclusions

We have presented the architecture and implementation of the KOBE open benchmarking engine
for federation systems. KOBE is both open-source software and an open architecture, leveraging

16https://semagrow.github.io/kobe/extend/add_federator
17Speci�cally, see the �rst step of the walk-through for adding a new federator. See also details about collecting

logs to compute evaluation metrics https://semagrow.github.io/kobe/extend/support_metrics

D3.5 Evaluation framework for linked geospatial data systems 13

https://semagrow.github.io/kobe/extend/add_federator
https://semagrow.github.io/kobe/extend/support_metrics

H2020-825258

containerization to allow the future inclusion of any federation engine. KOBE also uses Elas-
ticsearch as a log server and Kibana as the visualization layer for presenting evaluation metrics
extracted from these logs, again emphasizing openness by supporting user-de�ned ingestion pat-
terns to allow �exibility in how evaluation metrics are to be extracted from each federator's log
format. Deployment depends on Kubernetes, which is ubiquitous among the currently prevalent
Cloud infrastructures. These features allow experiment publishers the �exibility needed for sharing
federated query processing experiments that can be consistently reproduced with minimal e�ort
by the experiment consumers.

Although originally developed for our own experiments, we feel that the federated querying com-
munity can extract great value from the abstractions it o�ers, as it allows releasing a benchmark
as a complete, fully con�gured, automatically deployable testing environment.

As a next step, we are planning to expand the library of federators bundled with the KOBE
distribution, and especially with systems that will verify that KOBE operates at the appropriate
level of abstraction away from the speci�cs of particular federators. For instance, adding Triple
Pattern Fragments [22] will verify that adaptive source selection and planning can operate within
the KOBE framework.

Another interesting future extension would be support for the detailed evaluation of systems that
stream results before the complete result set has been obtained. This requires adding support for
calculating the relevant metrics, such as the die�ciency metric [1].

D3.5 Evaluation framework for linked geospatial data systems 14

H2020-825258

3. Linked Geospatial Data Benchmarks

In this chapter we presents the linked geospatial benchmarks that are contained in evaluation
framework for big linked geospatial data systems, that was developed during Task T3.5. These
benchmarks are Geographica2 (Section 3.1), Geographica3 (Section 3.2), and GeoFedBench (Sec-
tion 3.3).

3.1 Geographica2

Geographica2 1 [7] is the second iteration of the single node geospatial RDF store benchmark [4]
Geographica2 . It is more comprehensive, because it now includes new geospatial RDF stores
and frameworks, big real world datasets of many hundred million triples with up to �fty million
features of complex geometries, new tests and queries that reveal the scalability of these systems.
The augmented and revised real world workload of Geographica2 tests the e�ciency of primitive
spatial functions in RDF stores, their performance in the geocoding scenario against the new
Census dataset in addition to many other real use case scenarios and �nally includes computation
of statistics for geospatial datasets. A more detailed and systematic evaluation is performed using
the synthetic workload. The new scalability workload aims at discovering the limits of centralized
geospatial RDF stores of various architectures. It employs a set of six well balanced real world
datasets with highly complex geometries covering many European countries and compares three
RDF stores in terms of storage space, bulk loading and query response time. In addition, a special
version of the benchmark has been created for systems with limited geospatial functionality and
two more systems of this category are introduced along the six systems of the main benchmark,
all stressed against point-only subsets of the workloads. Three out of the eight systems use an
RDBMS for the persistence layer, while some of them o�er a variety of persistence options. The
benchmark is publicly available3 as part of the KOBE benchmarking engine.

3.1.1 A benchmarking framework

Geographica2 is both a benchmark and a benchmarking framework. Apart from the workloads,
datasets and querysets presented above, it also exposes two sets of APIs which allow the researcher
to easily integrate and test new systems. The �rst runtime API is for RDF stores which are
compliant with the OpenRDF Sesame API. The second runtime allows easy integration of systems
that are compliant with the newer Eclipse RDF4J4 API. Another important aspect of Geograhica2,
as a framework, is the convenience it provides to modify existing workloads or creating new ones
to meet the user's needs. There are class hierarchies of dataset and querysets which allow easy
sub-classing to introduce with minimal coding e�ort the desired changes that meet one's needs.

3.1.2 Real world workload

The benchmark contains a real world workload that uses publicly available linked geospatial data,
covering a wide range of geometry types (e.g., points, lines, polygons), some of which are highly
complex. Each dataset is loaded in a di�erent named graph and therefore allows for named graph
query patterns. Figure 3.1 shows the comprised datasets with their basic characteristics such as
data size, number of triples and the distribution of various geometry types they contain.

1http://geographica2.di.uoa.gr/
2http://geographica.di.uoa.gr/
3https://github.com/semagrow/benchmark-geographica
4https://rdf4j.org/

D3.5 Evaluation framework for linked geospatial data systems 15

http://geographica2.di.uoa.gr/
http://geographica.di.uoa.gr/
https://github.com/semagrow/benchmark-geographica
https://rdf4j.org/

H2020-825258

Figure 3.1: Real world dataset characteristics

Figure 3.2: Ontology for Points of Interest

The real world workload follows the approach of the benchmark Jackpine [15] and de�nes both a
micro and a macro benchmark. The micro benchmark tests primitive spatial functions. The spatial
component of a system is tested with queries that use non-topological functions, distance, spatial
selections, spatial joins and spatial aggregate functions. The macro benchmark tests performance
of selected RDF stores in typical application scenarios like geocoding, reverse geocoding, map
search and browsing and a real world use case from the EO domain. In these scenarios, a mix of
spatial nearest neighbor, spatial selections and spatial joins are tested over multiple named graphs.

3.1.3 Synthetic workload

The benchmark also features a synthetic workload, which is based primarily on VESPA [14] and
[10, 2]. It uses a generator that produces synthetic datasets of various sizes and generates queries
of prede�ned thematic and spatial selectivity combinations. In this way, performance of geospatial
RDF stores can be studied in a closely controlled environment.

3.1.4 Synthetic generator - StdSynthGen

The synthetic workload of Geographica2 relies on a generator that produces synthetic datasets of
arbitrary size and instantiates query templates as queries with varying thematic and spatial selec-
tivity. The synthetic generator StdSynthGen is a component of Geographica 2 and is distributed
freely as open-source software.

The produced dataset comprises a collection of N-Triples �les each one containing instances of
features on a map. As in VESPA [14], they model the following geographic features: country

states, land ownership, roads and points of interest. The features, follow a small ontology
that takes after a general version of the schema of OSM and uses GeoSPARQL ontologies and
vocabularies. In Figure 3.2 the developed ontology for representing points of interest is presented.
As in [2, 10], every feature (i.e., point of interest) is assigned a number of thematic tags each of
which consists of a key-value pair of strings. Each feature is tagged with key 1, every other feature
with key 2, every fourth feature with key 4, etc. up to key 2k, k ∈ N. This tagging makes it
possible to select di�erent parts of the entire dataset in a uniform way, and perform queries of

D3.5 Evaluation framework for linked geospatial data systems 16

H2020-825258

Figure 3.3: Visualization of the geometric part of the synthetic dataset

various thematic selectivities. For example, if we selected all points of interest tagged with key
1, we would retrieve all available points of interest (100% selectivity), if we selected all points of
interest tagged with key 2, we would retrieve half of them (50% selectivity), etc.

Every feature has a spatial extent that is modelled using the GeoSPARQL vocabulary. The spatial
extent of the land ownership dataset constitutes a uniform grid of n × n hexagons. The land
ownership dataset forms the basis for the spatial extent of all generated datasets since the size of
each dataset is given relatively to the number n (also mentioned as N from now on). In Figure 3.3
a sample of the spatial extent of all features is presented. By modifying the number of hexagons
along an axis, datasets of arbitrary size can be produced. The same parameter is also used in order
to create the corresponding queryset to run against the dataset.

By default, the synthetic generator produces the maximum (100%) and minimum (100/N%) the-
matic tags in order to keep the dataset size to reasonable sizes to be handled by single node
geospatial RDF stores. The emphasis is given on testing mainly the spatial component of the
systems under test and for this reason the produced queryset includes several instantiations of
each query template with many di�erence spatial selectivities, each one combined with the min
and max thematic selectivities (thematic tags) only.

The dataset produced for N=512 is 778.5MB. This is the value used for the synthetic workload
of Geographica2 benchmark for single node systems. Every time the N doubles the dataset size
quadruples. The dataset produced for N=4096 is 49.2GB. Since 4096 is 8*512, the resulting size
is approximately 64 times the size of 512 dataset. The limitations of this generator are discussed
in detail in section 3.2.2.

3.2 Geographica3 CL

3.2.1 General

In the context of ExtremeEarth project it was required to create a geospatial semantic benchmark
that would be appropriate to test systems such as Strabo2, the distributed scalable GeoSPARQL
query execution engine. The di�erentiating factors from the previously presented benchmark,
Geographica2, are: (i) the datasets should scale well beyond the sizes of the single node benchmark,
hundreds of TBs instead of hundreds of GBs, (ii) the deployment environment is HopsWorks, a
contemporary multi-node HDFS-derivative cluster and not single node server and (iii) it is di�cult
to �nd real world RDF geospatial datasets that exceed the few TBs limit.

3.2.2 A distributed geospatial benchmark

The sizes of the geospatial semantic datasets required by ExtremeEarth project (hundreds of TB)
for tasks 3-3 and 3-5 cannot be matched by real world datasets. A major issue with locating or

D3.5 Evaluation framework for linked geospatial data systems 17

H2020-825258

assembling real world geospatial datasets at this size is that they need to be well interlinked in
order to make reasonable queries over them. For example, �nding geospatial semantic datasets
with overlapping spatial extents is relatively easy, since the desired spatial association in most cases
is done at query time. However, in order to be able to run meaningful real world use case queries
against this collection of datasets we need to have dense associations in their thematic aspects as
well. Our best e�orts produced OSM and Corine Land Cover based datasets of 1TB size. These
e�orts were actually based on the scalability workload of Geographica2 which was extended in
order to go from 500 million triples to approximately 1.2 billion triples. The conclusion is that at
the time of writing the desired dataset sizes can only be achieved by a synthetic generator.

Limitations of the Standard Synthetic Generator

The Geographica2 StdSynthGen was initially considered because it produces an ontology based
dataset and the corresponding queryset, with a scaling factor N as a parameter. By appropri-
ately increasing N we could, in theory, create an as large as desired geospatial N-Triples dataset.
However when faced with the task of scaling to large values for N, a number of limitations of the
speci�c implementation were revealed, which did not allow it to scale to the desired ExtremeEarth
requirements. These limitations are described below:

• It is a single-threaded application with sequential processing logic and time complexity
O(N2). On an Intel i7-7700HQ CPU the N=4096 dataset (49.2GB) takes 20 minutes to
complete and the N=8192 dataset (196.7GB) requires 80 minutes.

• It is also a memory intensive application with space/memory complexity approximately
O(N2). On a 24GB RAM node the N=8192 dataset (196.7GB) is the max scaling factor
before a memory problem occurs. So for a N>=16384 dataset the memory requirement for
a single node system would be approximately 128GB Ram which is unreasonable.

• The output �le format is uncompressed text with storage requirements following the O(N2)
rule. A list of serious side-e�ects contains the following:

� N=4096 dataset is made up of 5 �les with a total of 50 GB size

� datasets are created externally of the target cluster and need to be uploaded to the
cluster �le system

� datasets this size require compression before uploading independent of the connection
bandwidth

� unreasonable expected upload times for N>=8192 datasets with high probability of
corrupting the data

� loss of project data on the cluster for whatever reason (i.e. platform upgrades) requires
new uploads

� large storage footprint punishes target cluster resources since production clusters use a
replication factor >1, usually 3.

• Queryset spatial and thematic selectivities are �xed and require code modi�cation to match
speci�c requirements

• Dataset includes only the maximum and minimum thematic tags described in the ontology.
As a consequence queries cannot use other tag values to achieve di�erent thematic selectivi-
ties.

• Dataset and Queryset are produced by the same class which allows for less �exibility as far
as dataset or queryset speci�c parameters.

These important limitations obliged us to create a new distributed Spark application that would
remedy all of the above problems. The speci�cations and features of this distributed synthetic
generator DistSynthGen are presented below.

D3.5 Evaluation framework for linked geospatial data systems 18

H2020-825258

3.2.3 Requirements of DistSynthGen

DistSynthGen follows the same ontology and logic as the standard synthetic generator StdSynthGen
and produces similar datasets. However in view of the limitations of StdSynthGen, in combina-
tion with the WP3 demand for cluster platforms, we set the following requirements for the new
distributed synthetic generator:

• The application needs to run in a cluster environment and employ a more parallel logic
for generating datasets in order to achieve high horizontal scalability. While ExtremeEarth
requires speci�cally the HopsWorks plarform, it is desirable to target standard Hadoop clus-
ters as well in order to increase the software acceptance by the user community, which is also
desirable by EE.

• Output datasets should have a more compact size and try to use more cluster friendly storage
options in addition to plain text.

• Try to optimize memory data structures in order to minimize memory footprint and reduce
network tra�c between nodes.

• Datasets must include the additional triples that correspond to all tag values according to
the ontology in order to allow for queries with various thematic selectivities to take e�ect.

• Queryset generation should be more parametric and allow the user to de�ne the desired lists
of thematic (tag values) and spatial selectivities.

• The output datasets should be validated against the corresponding datasets generated by
StdSynthGen, in order to make sure that the produced datasets are valid.

3.2.4 Main features of DistSynthGen

The most e�cient and appropriate distributed execution engine for Hadoop based clusters is Apache
Spark and we used the Spark RDD API for most part of the logic implementation. The features
of the new distributed synthetic generator are explained in detail in the following list:

• DistSynthGen was implemented as a Github Maven Java project5 with 2 pro�les that target
the following platforms:

� The standard Hadoop cluster is targeted by the hdfs pro�le, which is the default one
and the speci�c releases of the main components are: Hadoop v2.10.0 and Apache Spark
v2.4.5

� The HopsWorks cluster platform is targeted by the hops pro�le and the speci�c releases
of the main components are: Hadoop v3.2.0.2 and Apache Spark v2.4.3.2

• Optimized data structures to minimize memory footprint on the driver, each executor and
network communication.

• To minimize the storage footprint the Parquet+Snappy �le format was added to the output
format options.

• To increase parallelism by dataset distributed consumers, such as Strabo 2 Loaders, the
number of optimal partitions can be provided as a parameter in order to have a speci�c
number of partitions for each one of the 5 dataset �les or automatic partition calculation can
be used by specifying a value of 0.

5https://github.com/tioannid/dist-semantic-geospatial-synthetic-generator

D3.5 Evaluation framework for linked geospatial data systems 19

https://github.com/tioannid/dist-semantic-geospatial-synthetic-generator

H2020-825258

Figure 3.4: Spatial Selection query on Landownerships

• Dynamic Spatial Selectivities for Querysets is provided by the user and allows for better
steering of query loads towards testing the scalability of spatial behaviour.

• Dynamic Thematic tag list (thematic selectivities) for Querysets is provided by the user and
allows better control of the overall data engaged in heavy query joins.

• Dataset and Queryset are produced by di�erent Java classes each one with its own set of
parameters. This allows for more clarity and �exibility as far as speci�c parameters are
concerned for each type of operation (dataset or queryset generation).

• Veri�ed that produced datasets and querysets of DistSynthGen match the output datasets
and querysets of the StdSynthGen for scaling factors (N=4,..,32, .., 256, 512, 1024, 2048,
4096).

• The latest release of the DistSynthGen is 2.4.5-SNAPSHOT

3.2.5 DistSynthGen Queries explained

DistSynthGen uses 2 GeoSPARQL query templates: (i) spatial selection and (ii) spatial join. Each
template is further customized by the choice of the spatial function, feature(s) involved, thematic
and spatial selectivity. Each GeoSPARQL query �le has a distinctive name which combines all the
above information in order to make it as descriptive as possible.

Spatial Selection template

The spatial selection template has four di�erent parameters (sf, fc, ts, ss):

• Spatial function (sf) : sfIntersects or sfWithin

• Feature class (fc) used for spatial and thematic selection : Landownership, State, POIs
(points of interest)

• Thematic tag/selectivity (ts) : 20=1,..,2k=N, where N is the dataset scale factor

• Spatial selectivity (ss) : s <= 1, where 1 means 100%

Figure 3.4 shows query Q00_Synthetic_Selection_Intersects_Landownerships_1_1.0.qry which
is an instantiation of the spatial selection template. This query requests all Landownership fea-
tures which have a tag value 1 and spatially intersect with a bounding box that covers 1.0 =
100% of the ontology's map spatial extent. The template is instantiated with the following set of
values:

(sf, fc, ts, ss) = (sf_Intersects, Landownerships, 1, 1.0)

D3.5 Evaluation framework for linked geospatial data systems 20

H2020-825258

Figure 3.5: Spatial Join query between Landownerships and States

Spatial Join template

The spatial join template has �ve di�erent parameters (sf, fc1, ts1, fc2, ts2):

• Spatial function (sf) : sfIntersects, sfTouches or sfWithin

• Feature class 1 (fc1) : �rst feature to participate in the spatial join

• Thematic tag/selectivity 1 (ts1) : 20=1,..,2k=N, where N is the dataset scale factor

• Feature class 2 (fc2) : second feature to participate in the spatial join

• Thematic tag/selectivity 2 (ts2) : 20=1,..,2k=N, where N is the dataset scale factor

Figure 3.5 shows query Q10_Synthetic_Join_Intersects_Landownerships_States_1_2.qry which
is an instantiation of the spatial join template. This query requests all Landownership and State
features which spatially intersect, with the additional thematic constraints that all (tag=1 means
100%) Landownership instances should be considered but only half (tag=2 means 50%) of the
State instances. The template is instantiated with the following set of values:

(sf, fc1, ts1, fc2, ts2) = (sf_Intersects, Landownerships, 1, States, 2)

3.2.6 Usage of DistSynthGen

In the below sections we start by giving instructions on how to build a platform speci�c version of
the software. We proceed with examples of dataset and queryset generation for both target cluster
platforms and elaborate on the options provided to the user and the obtained results.

Platform speci�c build

To user initially needs to clone the DistSynthGen the github repository6. For the standard Hadoop
cluster the user builds (from the local repo root directory) with maven using the hdfs pro�le or
no pro�le at all, since hdfs is the default one:

$ mvn clean package -DskipTests [-Phdfs]

6https://github.com/tioannid/dist-semantic-geospatial-synthetic-generator

D3.5 Evaluation framework for linked geospatial data systems 21

https://github.com/tioannid/dist-semantic-geospatial-synthetic-generator

H2020-825258

The generated uber-jar is named SyntheticGenerator-2.4.5-SNAPSHOT_hdfs.jar.

To build the DistSynthGen for the HopsWorks cluster the user builds (from the local repo root
directory) with maven using the hops pro�le:

$ mvn clean package -DskipTests -Phops

The generated uber-jar SyntheticGenerator-2.4.5-SNAPSHOT_hops.jar needs to be up-
loaded through the HopsWorks UI into a project in order to be available for execution.

Dataset generation

The main class for the dataset generation is generator.DistDataSyntheticGenerator and its
syntax is shown below:

DistDataSyntheticGenerator <FileFormat> <DstDir> <N> <P> {<ALL_THEMA>}
<FileFormat> : spark output file format {text | parquet}
<DstDir> : destination folder in HDFS
<N> : dataset scale factor, a value (preferably 2^k) which scales the size of the dataset
<P> : number of partitions, to be used for the generation of the 5 data files (0=automatic)
{<ALL_THEMA>} : default value=false, produce all thematic tag values

The following command uses the 'hdfs' jar to create a N=256 scaled dataset comprising 5 parquet
snappy-compressed �les each one in 1 partition with all thematic tag values present:

$ $SPARK_HOME/bin/spark-submit --class generator.DistDataSyntheticGenerator --master spark://localhost:7077 \

--conf spark.sql.parquet.compression.codec=snappy target/SyntheticGenerator-2.4.5-SNAPSHOT_hdfs.jar \

parquet hdfs://localhost:9000/user/tioannid/Resources/Synthetic/256/data/ 256 1 ALL_THEMA

$ hdfs dfs -ls Resources/Synthetic/256/data/*

Found 2 items

-rw-r--r-- 1 tioannid supergroup 0 ./data/HEXAGON_LARGE/_SUCCESS

-rw-r--r-- 1 tioannid supergroup 1150557 ./256/data/HEXAGON_LARGE/part-00000-7bd028db-93ad-4982-ace0-c8b95b02ac6f-c000.snappy.parquet

Found 2 items

-rw-r--r-- 1 tioannid supergroup 0 ./data/HEXAGON_LARGE_CENTER/_SUCCESS

-rw-r--r-- 1 tioannid supergroup 862458 ./256/data/HEXAGON_LARGE_CENTER/part-00000-14a7306c-c243-46ae-8ff3-e89a86f1f084-c000.snappy.parquet

Found 2 items

-rw-r--r-- 1 tioannid supergroup 0 ./data/HEXAGON_SMALL/_SUCCESS

-rw-r--r-- 1 tioannid supergroup 11826896 ./256/data/HEXAGON_SMALL/part-00000-be2d7fde-b7b2-4327-bb1e-689f93627082-c000.snappy.parquet

Found 2 items

-rw-r--r-- 1 tioannid supergroup 0 ./data/LINESTRING/_SUCCESS

-rw-r--r-- 1 tioannid supergroup 616819 ./256/data/LINESTRING/part-00000-aee735c3-3327-4bf3-93a0-5ffc12df1068-c000.snappy.parquet

Found 2 items

-rw-r--r-- 1 tioannid supergroup 0 ./256/data/POINT/_SUCCESS

-rw-r--r-- 1 tioannid supergroup 9444757 ./256/data/POINT/part-00000-4825de83-c3cf-46dd-8eab-d89fe8552b0a-c000.snappy.parquet

Figure 3.6 shows the HopsWorks user interface job arguments to create a N=4096 scaled dataset in
the hdfs:///Projects/DistSynthGen/Synthetic244_ALLTHEMA/4096/unitext/ location, com-
prising 5 text �les each one in 1 partition with all thematic tag values present. Figure 3.7 shows the
1 partition �le generated for the LandOwnership feature class which corresponds to HEXAGON_SMALL
geometry.

Queryset generation

The main class for the queryset generation is generator.DistQuerySyntheticGenerator and its
syntax is shown below:

DistQuerySyntheticGenerator <DstDir> <N> <S> <T>
<DstDir> : destination folder in HDFS
<N> : dataset scale factor, the queries will be used for the corresponding scaled dataset
<S> : selectivities list, eg. "1,0.5,0.1,0.01" for 100%, 50%, 10%, 1%, 0.1% selectivities
<T> : thematic tag list (comma separated within double-quotes of 2^i values <= N)

D3.5 Evaluation framework for linked geospatial data systems 22

hdfs:///Projects/DistSynthGen/Synthetic244_ALLTHEMA/4096/unitext/

H2020-825258

Figure 3.6: Dataset creation on the HopsWorks platform

Figure 3.7: Single partition �le for LandOwnerships (small hex) on HopsWorks

The following command uses the 'hdfs' jar to create a N=512 scaled queryset to be used with the
corresponding N=512 scaled dataset, using spatial selectivities (100%, 10%, 1%) and thematic tag
list "1,2,512" (1-> 100%, 2-> 50%, 512-> 1/512*100 = 0,19%):

$ $SPARK_HOME/bin/spark-submit --class generator.DistQuerySyntheticGenerator --master spark://localhost:7077 \
target/SyntheticGenerator-2.4.5-SNAPSHOT_hdfs.jar hdfs://localhost:9000/user/tioannid/Resources/Synthetic/512/qrytest/ \
512 "1,0.1,0.01" "1,2,512"

$ hdfs dfs -ls hdfs://localhost:9000/user/tioannid/Resources/Synthetic/512/qrytest
Found 72 items
-rw-r--r-- 1 tioannid supergroup 928 hdfs://localhost:9000/../qrytest/Q00_Synthetic_Selection_Intersects_Landownerships_1_1.0.qry
-rw-r--r-- 1 tioannid supergroup 928 hdfs://localhost:9000/../qrytest/Q01_Synthetic_Selection_Intersects_Landownerships_2_1.0.qry
-rw-r--r-- 1 tioannid supergroup 930 hdfs://localhost:9000/../qrytest/Q02_Synthetic_Selection_Intersects_Landownerships_512_1.0.qry
-rw-r--r-- 1 tioannid supergroup 960 hdfs://localhost:9000/../qrytest/Q03_Synthetic_Selection_Intersects_Landownerships_1_0.1.qry
-rw-r--r-- 1 tioannid supergroup 960 hdfs://localhost:9000/../qrytest/Q04_Synthetic_Selection_Intersects_Landownerships_2_0.1.qry
-rw-r--r-- 1 tioannid supergroup 962 hdfs://localhost:9000/../qrytest/Q05_Synthetic_Selection_Intersects_Landownerships_512_0.1.qry
-rw-r--r-- 1 tioannid supergroup 958 hdfs://localhost:9000/../qrytest/Q06_Synthetic_Selection_Intersects_Landownerships_1_0.01.qry
-rw-r--r-- 1 tioannid supergroup 958 hdfs://localhost:9000/../qrytest/Q07_Synthetic_Selection_Intersects_Landownerships_2_0.01.qry
-rw-r--r-- 1 tioannid supergroup 960 hdfs://localhost:9000/../qrytest/Q08_Synthetic_Selection_Intersects_Landownerships_512_0.01.qry
-rw-r--r-- 1 tioannid supergroup 1106 hdfs://localhost:9000/../qrytest/Q09_Synthetic_Join_Intersects_Landownerships_States_1_1.qry
-rw-r--r-- 1 tioannid supergroup 1106 hdfs://localhost:9000/../qrytest/Q10_Synthetic_Join_Intersects_Landownerships_States_1_2.qry
-rw-r--r-- 1 tioannid supergroup 1108 hdfs://localhost:9000/../qrytest/Q11_Synthetic_Join_Intersects_Landownerships_States_1_512.qry
-rw-r--r-- 1 tioannid supergroup 1106 hdfs://localhost:9000/../qrytest/Q12_Synthetic_Join_Intersects_States_Landownerships_1_1.qry
-rw-r--r-- 1 tioannid supergroup 1106 hdfs://localhost:9000/../qrytest/Q13_Synthetic_Join_Intersects_States_Landownerships_1_2.qry
-rw-r--r-- 1 tioannid supergroup 1108 hdfs://localhost:9000/../qrytest/Q14_Synthetic_Join_Intersects_States_Landownerships_1_512.qry
-rw-r--r-- 1 tioannid supergroup 1106 hdfs://localhost:9000/../qrytest/Q15_Synthetic_Join_Intersects_Landownerships_States_2_1.qry
-rw-r--r-- 1 tioannid supergroup 1106 hdfs://localhost:9000/../qrytest/Q16_Synthetic_Join_Intersects_Landownerships_States_2_2.qry
-rw-r--r-- 1 tioannid supergroup 1108 hdfs://localhost:9000/../qrytest/Q17_Synthetic_Join_Intersects_Landownerships_States_2_512.qry
-rw-r--r-- 1 tioannid supergroup 1106 hdfs://localhost:9000/../qrytest/Q18_Synthetic_Join_Intersects_States_Landownerships_2_1.qry
-rw-r--r-- 1 tioannid supergroup 1106 hdfs://localhost:9000/../qrytest/Q19_Synthetic_Join_Intersects_States_Landownerships_2_2.qry
-rw-r--r-- 1 tioannid supergroup 1108 hdfs://localhost:9000/../qrytest/Q20_Synthetic_Join_Intersects_States_Landownerships_2_512.qry
-rw-r--r-- 1 tioannid supergroup 1108 hdfs://localhost:9000/../qrytest/Q21_Synthetic_Join_Intersects_Landownerships_States_512_1.qry
-rw-r--r-- 1 tioannid supergroup 1108 hdfs://localhost:9000/../qrytest/Q22_Synthetic_Join_Intersects_Landownerships_States_512_2.qry
-rw-r--r-- 1 tioannid supergroup 1110 hdfs://localhost:9000/../qrytest/Q23_Synthetic_Join_Intersects_Landownerships_States_512_512.qry
-rw-r--r-- 1 tioannid supergroup 1108 hdfs://localhost:9000/../qrytest/Q24_Synthetic_Join_Intersects_States_Landownerships_512_1.qry
-rw-r--r-- 1 tioannid supergroup 1108 hdfs://localhost:9000/../qrytest/Q25_Synthetic_Join_Intersects_States_Landownerships_512_2.qry
-rw-r--r-- 1 tioannid supergroup 1110 hdfs://localhost:9000/../qrytest/Q26_Synthetic_Join_Intersects_States_Landownerships_512_512.qry
-rw-r--r-- 1 tioannid supergroup 1071 hdfs://localhost:9000/../qrytest/Q27_Synthetic_Join_Touches_States_States_1_1.qry
-rw-r--r-- 1 tioannid supergroup 1071 hdfs://localhost:9000/../qrytest/Q28_Synthetic_Join_Touches_States_States_1_2.qry
-rw-r--r-- 1 tioannid supergroup 1073 hdfs://localhost:9000/../qrytest/Q29_Synthetic_Join_Touches_States_States_1_512.qry
-rw-r--r-- 1 tioannid supergroup 1071 hdfs://localhost:9000/../qrytest/Q30_Synthetic_Join_Touches_States_States_1_1.qry
-rw-r--r-- 1 tioannid supergroup 1071 hdfs://localhost:9000/../qrytest/Q31_Synthetic_Join_Touches_States_States_1_2.qry
-rw-r--r-- 1 tioannid supergroup 1073 hdfs://localhost:9000/../qrytest/Q32_Synthetic_Join_Touches_States_States_1_512.qry
-rw-r--r-- 1 tioannid supergroup 1071 hdfs://localhost:9000/../qrytest/Q33_Synthetic_Join_Touches_States_States_2_1.qry
-rw-r--r-- 1 tioannid supergroup 1071 hdfs://localhost:9000/../qrytest/Q34_Synthetic_Join_Touches_States_States_2_2.qry
-rw-r--r-- 1 tioannid supergroup 1073 hdfs://localhost:9000/../qrytest/Q35_Synthetic_Join_Touches_States_States_2_512.qry
-rw-r--r-- 1 tioannid supergroup 1071 hdfs://localhost:9000/../qrytest/Q36_Synthetic_Join_Touches_States_States_2_1.qry
-rw-r--r-- 1 tioannid supergroup 1071 hdfs://localhost:9000/../qrytest/Q37_Synthetic_Join_Touches_States_States_2_2.qry
-rw-r--r-- 1 tioannid supergroup 1073 hdfs://localhost:9000/../qrytest/Q38_Synthetic_Join_Touches_States_States_2_512.qry

D3.5 Evaluation framework for linked geospatial data systems 23

H2020-825258

-rw-r--r-- 1 tioannid supergroup 1073 hdfs://localhost:9000/../qrytest/Q39_Synthetic_Join_Touches_States_States_512_1.qry
-rw-r--r-- 1 tioannid supergroup 1073 hdfs://localhost:9000/../qrytest/Q40_Synthetic_Join_Touches_States_States_512_2.qry
-rw-r--r-- 1 tioannid supergroup 1075 hdfs://localhost:9000/../qrytest/Q41_Synthetic_Join_Touches_States_States_512_512.qry
-rw-r--r-- 1 tioannid supergroup 1073 hdfs://localhost:9000/../qrytest/Q42_Synthetic_Join_Touches_States_States_512_1.qry
-rw-r--r-- 1 tioannid supergroup 1073 hdfs://localhost:9000/../qrytest/Q43_Synthetic_Join_Touches_States_States_512_2.qry
-rw-r--r-- 1 tioannid supergroup 1075 hdfs://localhost:9000/../qrytest/Q44_Synthetic_Join_Touches_States_States_512_512.qry
-rw-r--r-- 1 tioannid supergroup 908 hdfs://localhost:9000/../qrytest/Q45_Synthetic_Selection_Within_Pois_1_1.0.qry
-rw-r--r-- 1 tioannid supergroup 908 hdfs://localhost:9000/../qrytest/Q46_Synthetic_Selection_Within_Pois_2_1.0.qry
-rw-r--r-- 1 tioannid supergroup 910 hdfs://localhost:9000/../qrytest/Q47_Synthetic_Selection_Within_Pois_512_1.0.qry
-rw-r--r-- 1 tioannid supergroup 934 hdfs://localhost:9000/../qrytest/Q48_Synthetic_Selection_Within_Pois_1_0.1.qry
-rw-r--r-- 1 tioannid supergroup 934 hdfs://localhost:9000/../qrytest/Q49_Synthetic_Selection_Within_Pois_2_0.1.qry
-rw-r--r-- 1 tioannid supergroup 936 hdfs://localhost:9000/../qrytest/Q50_Synthetic_Selection_Within_Pois_512_0.1.qry
-rw-r--r-- 1 tioannid supergroup 936 hdfs://localhost:9000/../qrytest/Q51_Synthetic_Selection_Within_Pois_1_0.01.qry
-rw-r--r-- 1 tioannid supergroup 936 hdfs://localhost:9000/../qrytest/Q52_Synthetic_Selection_Within_Pois_2_0.01.qry
-rw-r--r-- 1 tioannid supergroup 938 hdfs://localhost:9000/../qrytest/Q53_Synthetic_Selection_Within_Pois_512_0.01.qry
-rw-r--r-- 1 tioannid supergroup 1110 hdfs://localhost:9000/../qrytest/Q54_Synthetic_Join_Within_Pois_States_1_1.qry
-rw-r--r-- 1 tioannid supergroup 1110 hdfs://localhost:9000/../qrytest/Q55_Synthetic_Join_Within_Pois_States_1_2.qry
-rw-r--r-- 1 tioannid supergroup 1112 hdfs://localhost:9000/../qrytest/Q56_Synthetic_Join_Within_Pois_States_1_512.qry
-rw-r--r-- 1 tioannid supergroup 1110 hdfs://localhost:9000/../qrytest/Q57_Synthetic_Join_Within_States_Pois_1_1.qry
-rw-r--r-- 1 tioannid supergroup 1110 hdfs://localhost:9000/../qrytest/Q58_Synthetic_Join_Within_States_Pois_1_2.qry
-rw-r--r-- 1 tioannid supergroup 1112 hdfs://localhost:9000/../qrytest/Q59_Synthetic_Join_Within_States_Pois_1_512.qry
-rw-r--r-- 1 tioannid supergroup 1110 hdfs://localhost:9000/../qrytest/Q60_Synthetic_Join_Within_Pois_States_2_1.qry
-rw-r--r-- 1 tioannid supergroup 1110 hdfs://localhost:9000/../qrytest/Q61_Synthetic_Join_Within_Pois_States_2_2.qry
-rw-r--r-- 1 tioannid supergroup 1112 hdfs://localhost:9000/../qrytest/Q62_Synthetic_Join_Within_Pois_States_2_512.qry
-rw-r--r-- 1 tioannid supergroup 1110 hdfs://localhost:9000/../qrytest/Q63_Synthetic_Join_Within_States_Pois_2_1.qry
-rw-r--r-- 1 tioannid supergroup 1110 hdfs://localhost:9000/../qrytest/Q64_Synthetic_Join_Within_States_Pois_2_2.qry
-rw-r--r-- 1 tioannid supergroup 1112 hdfs://localhost:9000/../qrytest/Q65_Synthetic_Join_Within_States_Pois_2_512.qry
-rw-r--r-- 1 tioannid supergroup 1112 hdfs://localhost:9000/../qrytest/Q66_Synthetic_Join_Within_Pois_States_512_1.qry
-rw-r--r-- 1 tioannid supergroup 1112 hdfs://localhost:9000/../qrytest/Q67_Synthetic_Join_Within_Pois_States_512_2.qry
-rw-r--r-- 1 tioannid supergroup 1114 hdfs://localhost:9000/../qrytest/Q68_Synthetic_Join_Within_Pois_States_512_512.qry
-rw-r--r-- 1 tioannid supergroup 1112 hdfs://localhost:9000/../qrytest/Q69_Synthetic_Join_Within_States_Pois_512_1.qry
-rw-r--r-- 1 tioannid supergroup 1112 hdfs://localhost:9000/../qrytest/Q70_Synthetic_Join_Within_States_Pois_512_2.qry
-rw-r--r-- 1 tioannid supergroup 1114 hdfs://localhost:9000/../qrytest/Q71_Synthetic_Join_Within_States_Pois_512_512.qry

The names of the generated queries include the query number, the spatial query type (join or
selection), the spatial operator used, the feature(s) that participate, the thematic tag(s) and the
spatial selectivity used.

3.2.7 Triples scaling

In this section, we present how the triples per dataset feature class scale with respect to the dataset
scaling factor. Scaling factor N=512 is the baseline because this is the factor used in the Synthetic
workload of Geographica2 benchmark. Scaling factor N=4096 is the threshold from which onward
the StdSynthGen starts to raise problems on a single node server. Figure 3.8 shows that each
time a scaling factor doubles, the number of triples approximately quadruple. The scaling factors
up to N=32768 have been successfully created in the HopsWorks software platform on PolarTEP
with a small hardware con�guration (2 physical servers, max 10-12 executors, �le replication=1).
All results presented in this section have been generated with the default value of false for the
ALL_THEMA parameter, and as a result only the minimum and maximum thematic tags are
generated(for values 1 and scale factor respectively).

3.2.8 Storage/size scaling

Below, we present the storage scaling with respect to the dataset scaling factor. Figure 3.9 presents
the storage size per feature �le in Text format and the total storage required for one copy of the
data. The ratio by which the total storage size increments from one scaling factor to the next is
presented in red color and is approximately 4. Figure 3.10 presents the storage size per feature
�le in Parquet+Snappy format and the total storage required for one copy of the data. The ratio
by which the total storage size increments from one scaling factor to the next is presented in red
color and is approximately 4.

The Parquet+Snappy �le format storage requirements are on average 13% of the Text �le format
requirements and therefore it is by far a more cluster-friendly choice. As we will see later, this
bene�t comes with a small time generation penalty.

D3.5 Evaluation framework for linked geospatial data systems 24

H2020-825258

Figure 3.8: Scaling of Triples per Feature Class

Figure 3.9: Text Storage Scaling

Figure 3.10: Parquet + Snappy compression Storage Scaling

D3.5 Evaluation framework for linked geospatial data systems 25

H2020-825258

Figure 3.11: PolarTEP Baseline Con�guration: Driver(2GB, 1vCore), 1 x Executor(4GB, 1vCore)

3.2.9 Time/generation scaling

The time scalability of the DistSynthGen data generation is presented and analyzed in the below
paragraphs. Both output �le formats were tested. In order to check the time scalability we em-
ployed three di�erent HopsWorks job con�gurations, by increasing the statically allocated hardware
resources from the PolarTEP cluster. These are: (i) Baseline, (ii) Medium, and (iii) High.

Baseline con�guration

The Baseline job con�guration represents an as similar as possible cluster con�guration to that
of a single node system. For the Driver node it statically allocates 2GB of RAM and 1vCore.
There is 1 Executor node which statically allocates 4GB of RAM and 1vCore. With this setup we
intend to draw conclusions about the following aspects of DistSynthGen performance:

• Compare the DistSynthGen performance (Text format) against the StdSynthGen perfor-
mance on the same scaling factors that StdSynthGen can produce on a single node server.

• Check the DistSynthGen time scalability for small scaling factors.

• Evaluate the time penalty of using Parquet+Snappy against the Text �le format.

Figure 3.11 presents the Spark Job Total Uptime with the Baseline job con�guration in order
to complete the dataset generation for scaling factors N=512,..,4096.

In red color you see the execution time scaling factor as the dataset scale factor doubles. Below 4
is very good. For N=4096 it takes less time in any of the output formats than the 20min execution
time of the StdSynthGen in a single node machine. For the same scaling factor, Parquet+Snappy
increaces the time by 27%.

Medium con�guration

The Medium job con�guration scales in two directions. It basically raises the driver memory to
4GB and the number of executors to 4. This is a modest setup that does not a�ect even a small
cluster such as PolarTEP. The scaling factor range under test is: 2048, 4096, 8192, 16384. The
two smaller values of this range intentionally overlap with the two largest scaling factors tested
with the Baseline con�guration and extends it with 2 extra steps which are the maximum the
StdSynthGen could generate on a single node with ample resources.

Figure 3.12 presents the Spark Job Total Uptime with the Medium job con�guration in order
to complete the dataset generation for scaling factors N=2048,..,16384. In red color it is depicted
that the execution time scaling factor remains below 4 as the dataset scale factor doubles. For the

D3.5 Evaluation framework for linked geospatial data systems 26

H2020-825258

Figure 3.12: PolarTEP Medium Con�guration: Driver(4GB, 1vCore), 4 x Executor(4GB, 1vCore)

Figure 3.13: PolarTEP High Con�guration: Driver(8GB, 2vCore), 8 x Executor(4GB, 1vCore)

N=4096 dataset we also notice that the time is reduced more than x3.2 compared to the Baseline
con�guration, and for the parquet dataset the reduction is even bigger, x3.4.

For the 2 larger datasets the time scaling factors are below or near x4 which means linear horizontal
scalability or better. We also had tested the e�ect of specifying the ideal7 number of partitions
for each one of the generated �les, using the Apache Spark suggestion of 2-3 times the number of
total executor vCores. In this case we used 3 times 4 vCores which results in 12 partitions. The
speci�c tests were run for the parquet format only and yielded a 5-10% improvement in response
time. This is a small improvement compared to the expected one. However an important thing
to take into account is that the PolarTEP cluster has only one datanode (�le replication factor 1)
and it doesn't help in achieving high parallelization in disk I/O when the executors read or write
partitions.

High con�guration

The High job con�guration doubles the Medium con�guration's allocated resources. It raises the
driver memory to 8GB, the number of driver vCores increases to 2 and the number of executors to
8. This is a decent setup for the PolarTEP cluster size, since it statically allocates approximately
43% of its resources. The scaling factor range under test is: 4096, 8192, 16384, 32768. The
three smaller values of this range intentionally overlap with the three largest scaling factors tested
with the Medium con�guration and extends by 1 extra step which is the maximum storage limit of
the PolarTEP datanode.

Figure 3.13 presents the Spark Job Total Uptime with the High job con�guration in order to
complete the dataset generation for scaling factors N=4096,..,32768. In red color it is depicted
that the execution time scaling factor remains below 4 (for most cases) as the dataset scale factor
doubles. For the N=32768 dataset the Text format time scaling factor x4.16 exceeds the ideal
horizontal scalability while the Parquet+Snappy format time scaling factor is approximately x4.
We also notice that for the two largest datasets in Text format, the time is reduced more than x1.6
compared to the Medium con�guration, and for the parquet dataset the reduction is even bigger,
x1.76 which is close to the ideally expected improvement of x2, since we have doubled the allocated
resources.

7https://spark.apache.org/docs/2.4.8/tuning.html

D3.5 Evaluation framework for linked geospatial data systems 27

https://spark.apache.org/docs/2.4.8/tuning.html

H2020-825258

3.3 GeoFedBench

Performance benchmarks are invaluable for evaluating and comparing federated query processing
systems, but it is hard to design benchmarks that are both realistic and informative about the
systems being tested. In this section we present GeoFedBench [20], a benchmark that has been
obtained from the domain of food security and uses GeoSPARQL constructs that challenge all
phases of federated query processing. The benchmark is publicly available8 as part of the KOBE
benchmarking engine.

3.3.1 Introduction and Motivation

Performance benchmarks are invaluable for evaluating and comparing systems, but designing
benchmarks is subject to considerations that are di�cult to satisfy simultaneously. One potential
tension is the creation of a realistic benchmark that accurately re�ects how the benchmarked sys-
tems will behave in real-world use cases against the design of a benchmark that is informative with
respect to system characteristics we know in advance that we need to test and measure.

Given the above, we are excited to present a benchmark that has been obtained from an actual,
practical applications of linked geospatial data querying. The data and the queries derived from
practical use cases in the context of ExtremeEarth; In particular:

1. linking land usage data with water availability data provided for the Food Security Use Case

2. linking land usage data with ground observations for the purpose of estimating crop type
accuracy

Besides being extracted from a real work�ow in the Earth Observation domain, the benchmark
queries use GeoSPARQL constructs that challenge all phases of federated query processing, from
source selection to query planing and execution. Besides a detailed presentation of the datasets
and the queries (Subsection 3.3.2 and Subsection 3.3.3), we also present an analysis of the basic
query characteristics of the benchmark and the challenges that presents to federated GeoSPARQL
query engines (Subsection 3.3.4).

3.3.2 The GSSBench Suite

The �rst part of the benchmark is the GSSBench suite. In this suite we have 3 data layers that
cover Austria (i.e., administrative, snow cover, land usage) and each layer is partitioned both
thematically and geospatially, thus resulting in a federation with more than 25 datasets. Each
dataset contains a single thematic layer and refers to a speci�c polygonal area. The queries are
provided by a real-world use case, namely the combination of snow cover data with land usage
data (these queries were compiled with the help of VISTA).

Use-case: Combining snow data with crop-type data for Food Security

Food security is one of the most challenging issues of this century, mainly due to population
growth, increased food consumption, and climate change. The goal is to minimize the risks of
yield loss while making sure not to damage the available resources. Of great importance is the
study of irrigation, which requires reliable water resources in the area being farmed. Considering

8https://github.com/semagrow/benchmark-geofedbench

D3.5 Evaluation framework for linked geospatial data systems 28

https://github.com/semagrow/benchmark-geofedbench

H2020-825258

the fact that a large portion of the world's freshwater is linked to snowfall and snow storage, a
promising way for providing an indication of water availability for irrigation is to study the snow
cover areas in conjunction with the �eld boundaries and their crop-type information. The queries
that are most relevant for this analysis are spatial within queries, spatial intersection queries, and
within-distance queries: that is, retrieving the land parcels with a given crop type that are within,
intersecting, or within a given maximum distance (without requiring the exact distance) from any
snow-covered area. Moreover, sometimes we need to reduce our focus either on a smaller polygonal
area with given coordinates, or on a speci�c administrative region.

Datasets

We use the following data sources:9

1. The Austrian Land Parcel Identi�cation System (INVEKOS)10, which contains the geo-
locations of all crop parcels in Austria and the owners' self-declaration about the crops
grown in each parcel.

2. A snow cover map11, which contains thematic and geospatial snow data within Austria from
February to April of 2018.

3. The Database of Global Administrative Areas (GADM) for Austria12, which contains all
administrative divisions of Austria up to Level-3.

We envisage that Austrian state governments publish crop data for their own area of responsibility;
and a further (possibly di�erent) entity publishes snow cover datasets for the same area. As the
datasets described previously refer to the whole region of Austria, we partinioned them for the
purposes of our benchmark to datasets that refer to smaller areas. Regarding the administrative
and crop datasets, we partition them into smaller datasets according to the polygons of the states
of Austria. For the snow cover dataset, we create two di�erent partitions; one partition using a
canonical geographical grid (which re�ects a scenario where the snow cover data provider ignores
administrative areas) and one partition that follows the administrative regions (which re�ects a
scenario where snow cover data are also published by the state governments). The polygons of the
grids for the former partition are obtained by dividing the minimum bounding box of Austria into
8 parts in a 4 × 2 grid, and the polygons of the states of Austria (used for the partitioning of all
three datasets) are obtained from the GADM dataset.

The datasets and the code that we use for partitioning the data is publicly available.13 The
partitioning of a given input dataset according to a set of boundaries is executed as follows: First,
we populate each member of the partition with all features that their geometry intersects with the
corresponding boundary. Second, we substitute each shape of each member of the partition with its
intersection with the corresponding boundary. By doing this, for all features that their geometry
intersects with more than one partitioning boundary, we split the original shape into several parts
so that each part �ts entirely in a single member of the partition. Finally, we modify the URIs of
all resources so that all resources that appear in the same output dataset share a common pre�x,
which is unique among the pre�xes of all datasets of the benchmark.

Table 3.1 illustrates the statistics for the datasets of the benchmark; in the table, we group the
datasets by type and we display statistics about the sum of the group, as-well-as average and
standard deviation for each dataset in the group (notice that the datasets are unequal in size due

9All datasets described here are publicly available from http://rdf.iit.demokritos.gr/dumps/
10http://www.data.gv.at/katalog/dataset/f7691988-e57c-4ee9-bbd0-e361d3811641
11http://earthanalytics.eu/food-security-use-case.html
12https://gadm.org/maps/AUT.html
13The code that we use for partitioning the data are publicly available in https://github.com/semagrow/

semagrow-geotools.

D3.5 Evaluation framework for linked geospatial data systems 29

http://rdf.iit.demokritos.gr/dumps/
http://www.data.gv.at/katalog/dataset/f7691988-e57c-4ee9-bbd0-e361d3811641
http://earthanalytics.eu/food-security-use-case.html
https://gadm.org/maps/AUT.html
https://github.com/semagrow/semagrow-geotools
https://github.com/semagrow/semagrow-geotools

H2020-825258

Table 3.1: GSSBench suite: Dataset statistics.

datasets data type boundary #datasets
#triples

#prop.
total geosp. them.

gadm1-9
administrative
divisions

state
polygon

9
total 57 K 2 K 55 K 35
avg 6 K 250 6 K 35

stdev 4 K 200 4 K 0

crops1-9
crop types
and �eld
boundaries

state
polygon

9
total 14 M 2 M 12 M 7
avg 2 M 223 K 1 M 7

stdev 1 M 179 K 1 M 0

snowS1-9
snow cover
areas

state
polygon

9
total 331 K 66 K 265 K 5
avg 37 K 7 K 29 K 5

stdev 27 K 5 K 21 K 0

snowG1-7
snow cover
areas

4× 2 grid 7
total 335 K 67 K 268 K 5

average 48 K 9 K 38 K 5
stdev 34 K 6 K 27 K 0

to the large standard deviation for each group). Apart from the statistics, boundary type for each
dataset and the number of datasets per group. The number of the snowG datasets is 7 (and not
8, as expected) because the north-west part of the 4× 2 grid does not contain any data due to the
shape of Austria.

The datasets are organized into two possible federation setups for the three available data layers
(i.e., administrative, crops, and snow). The �rst federation setup comprises 27 source endpoints,
namely gadm1-9, crops1-9, and snowS1-9; the second one comprises 25 source endpoints, namely
gadm1-9, crops1-9, and snowG1-7. In the �rst setup, we have three datasets for each Austrian
state, i.e., all three data layers are split according to the same set of geographical boundaries,
while in the second one, the snow cover is divided in a canonical geographical grid, thus we have
two data layers that are (by nature) aligned on an uneven geographical split and one that is not
aligned.

Queries

In Table 3.2, we summarize the queries of the benchmark. The query workload is produced by 7
query templates (Q1-7); each query template has a single parameter, which is either a WKT literal
(Q1-3) or a Municipality name (Q4-7). We generate a set of 100 municipality names and a set of
100 WKT literals; this makes a total of 700 queries.

For the municipality names, we select 100 random municipalities from the GADM shape�le using
the PostgreSQL random() function. We ignore the municipalities whose names contain characters
not in the English alphabet in order to avoid possible string encoding con�icts. For the WKT
literals, we create 100 random polygons; We �rst generate 100 random points within the border
of Austria; then, we extend each point by a few meters in each direction, by using the PostGIS
ST_Expand() function, in order to form rectangles covering approximately an area of 25 square
kilometres each. We prune all polygons that are not completely within Austria and repeat the
steps above until the random polygons reach 100.

For every query, we de�ne its administrative part as the triple patterns that refer to administrative
data (i.e., datasets gadm1-9), its crop part as the triple patterns that refer to crop data (i.e.,
datasets crops1-9), and its snow part as the triple patterns that refer to snow data (i.e., datasets
snowS1-9 or snowG1-7). Q1 comprises only an administrative part, Q2 and Q3 comprise a snow

D3.5 Evaluation framework for linked geospatial data systems 30

H2020-825258

Table 3.2: GSSBench suite: Queries.

Parameter Query #tp
#geo
selec

#geo
joins

Data
layers

#r

Q1 Polygon in
WKT

Municipalities intersecting a given
polygon

6 1 0 gadm 3.7

Q2 Polygon in
WKT

Snow-covered potato �elds intersecting
a given polygon

10 2 1 crops,
snow

2.1

Q3 Polygon in
WKT

Potato �elds within 5 km from snow
cover and intersecting a given polygon

10 2 1 crops,
snow

15.6

Q4 Municipality
name

Snow cover areas within 5 km from a
given municipality

9 0 1 gadm,
snow

12.5

Q5 Municipality
name

Potato �elds within a given municipal-
ity

9 0 1 gadm,
crops

9.7

Q6 Municipality
name

Snow-covered potato �elds within a
given municipality

14 0 3 gadm,
crops,
snow

0.5

Q7 Municipality
name

Potato �elds within 5 km from snow
cover and within a given municipality

14 0 3 gadm,
crops,
snow

6.7

and a crop part, Q4 (resp. Q5) comprises an administrative and a snow (resp. crop) part, Q6 and
Q7 contain all three types of parts. Q1-Q3, Q6-7 use the geof:sfIntersects function; Q3, Q4,
and Q7 use the geof:distance function; and �nally, Q5-7 use the geof:sfWithin function.

For each query template, we also illustrate the number of triple patterns of the query (#tp), the
number of geospatial selection �lters, i.e., geospatial �lters with one free variable (#geoselec), the
number of geospatial join �lters, i.e., geospatial �lters with two free variables (#geojoins), and
the relevant data layers for each query template. Notice that the queries that are parameterized
with a WKT have geospatial selection �lters for each data layer of the query, while the remaning
queries do not have geospatial selection �lters. Moreover, all queries that make use of two or three
data layers (i.e., all queries apart from Q1) have geospatial join �lters for combining data from the
corresponding layers.

3.3.3 The GDOBench Suite

The second part of the benchmark is the GDOBench suite. The benchmark federates a database
of Earth Observation data about land usage and a database of ground observations about land
usage, to search for pairs between them that simultaneously satisfy geospatial and thematic (land
usage) constraints (these queries were compiled with the help of UNITN).

Use-case: Validating land usage data using ground observations

Detailed land usage data is crucial in many applications, ranging from formulating agricultural
policy and monitoring its execution, to conducting research on climate change resilience and future
food security. Land usage can be inferred from Earth Observation images or collected through
self-declaration, but in either case it is important for such data to be validated against land

D3.5 Evaluation framework for linked geospatial data systems 31

H2020-825258

Table 3.3: GDOBench suite: Dataset statistics.

dataset #shapes
#triples

#properties
total geospatial thematic

INVEKOS 2,008,137 14,056,959 4,016,274 10,040,685 7
LUCAS 4,325 30,379 8,650 21,729 11

surveys. Ground observations are geo-referenced to a point on the road adjacent to a �eld (and
not inside a �eld), which is often ambiguous in agricultural areas with several adjacent parcels;
further exacerbated by GPS accuracy. Therefore, we can estimate the error rate of the land usage
data as follows: �rst, all ground observation is irrelevant to the analysis if it is more than 10 meters
from any crop parcel. For the remaining ground observations, we �nd the nearest land parcel, and
if the crop types match, the GPS point provides a positive validation; otherwise it provides a
negative one. This process is challenging not only because it is computationally demanding (since
it involves quadratic many distance calculations), but because the crop types between di�erent
datasets usually make use of di�erent code names.

Datasets

We use the following data sources:

1. The Austrian Land Parcel Identi�cation System (INVEKOS)14, which contains the geo-
locations of all crop parcels in Austria and the owners' self-declaration about the crops
grown in each parcel.

2. The EUROSTAT's Land Use and Cover Area frame Survey (LUCAS)15, which contains
agro-environmental and soil data by �eld observation of geographically referenced points.

The datasets are publicly available as shape�les, and are transformed into RDF with the GeoTriples
tool [11]. The LUCAS dataset was extended with a set of mappings [13] between LUCAS land cover
codes and INVEKOS crop types. Table 3.3 gives more details about these datasets. We illustrate
the number of shapes that appear the original shape�les, as-well-as the number of triples, entities,
and properties that appear in the transformed RDF datasets.

Unlike GSSBench suite, here the datasets are not further partitioned.

Queries

In Table 3.4 we summarize the queries of the benchmark. Each row of the table corresponds with
a query template; the parameter is shown in the �parameter� column of the table.

Q1-3 are derived from the data validation use case, and are used to estimate the reliability of
the INVEKOS dataset. For each LUCAS instance URI, we check if: (Q1) the closest INVEKOS
instance is under 10 meters away and their crop labels match (positive validation); (Q2) the
closest INVEKOS instance is under 10 meters away and their crop labels do not match (negative
validation); or (Q3) there is no INVEKOS instance within 10 meters (neutral validation). Instead
of simply providing a boolean result, we formulated the queries as SELECT queries, so that the
data analyst can get more information regarding the corresponding instances. Thus, each query
either returns a single result (if the LUCAS instance has the desired property) or an empty result

14cf. http://www.data.gv.at/katalog/dataset/f7691988-e57c-4ee9-bbd0-e361d3811641
15cf. https://esdac.jrc.ec.europa.eu/projects/lucas

D3.5 Evaluation framework for linked geospatial data systems 32

http://www.data.gv.at/katalog/dataset/f7691988-e57c-4ee9-bbd0-e361d3811641
https://esdac.jrc.ec.europa.eu/projects/lucas

H2020-825258

Table 3.4: GDOBench suite: Queries.

parame-
ter

query #tp characteristics

Q1
LUCAS
URI

return the nearest INVEKOS
instance if it is within 10 meters
and their crop types match

10
Subquery,
ORDER, LIMIT 1

Q2
LUCAS
URI

return the nearest INVEKOS
instance if it is within 10 meters
and their crop types do not match

10

Subquery,
ORDER, LIMIT
1, FILTER NOT
EXISTS

Q3
LUCAS
URI

return the LUCAS instance if there
is no INVEKOS instance within 10
meters

10

Subquery,
ORDER, LIMIT
1, FILTER NOT
EXISTS

Q4 distance
return all INVEKOS instances
within D meters from a LUCAS
instance

5 -

set (otherwise). Notice that these queries have several characteristics apart from federated within-
distance geospatial joins.

In order to focus on the behavior of the within-distance geospatial join, we have also included
Q4. This query returns all INVEKOS instances that are within a given distance from a speci�c
LUCAS instance. The query is parameterized with various distances ranging from 10 meters to
100 kilometers. As for the LUCAS instance, we used the one that is closest to the center of the
minimum bounding box of Austria.

3.3.4 Benchmark characteristics

Since linked geospatial data vocabularies link instances with a geometry object (which then has as
an attribute the actual shape), these queries (and GeoSPARQL queries in general) challenge FILTER
optimizers because it presents them with comparisons between variable groundings (as opposed
to constant values), and because these comparisons are non-standard extensions (the geospatial
extensions of GeoSPARQL).

In most benchmarks, �lters are either not present at all [6] or only have unary functions or compar-
isons against constants [17] that can always be pushed into one data source. LargeRDFBench [16]
includes multi-variable �lters that compare values from di�erent repositories, challenging the op-
timizer to select the correct strategy: to fetch the left-hand side values and push the �lter into the
right-hand side source or to fetch both sides and apply the �lter locally. Both approaches are valid,
but can vary dramatically in terms of e�ciency. Our benchmark presents the same challenge in
a geospatial context; the federator is tested not only on correctly selecting the best strategy but
also on the e�ciency of its local implementation of the GeoSPARQL extension.

Properties of standard vocabularies, which can appear possibly in all sources of a federation, present
another challenge in the e�cient evaluation of a query. When evaluating a triple pattern that
contains a property such as rdf:type or owl:sameAs the source selector is prone to overestimate the
set of relevant sources, thus increasing both network tra�c and the overall query processing time.
Current benchmarks already contain such commonly used properties. But GeoFedBench stresses
source selections more on this direction by exploiting a query characteristic that appears frequently

D3.5 Evaluation framework for linked geospatial data systems 33

H2020-825258

in Geospatial data; a resource ?x is linked with its geometry representation ?wkt using chains of
known properties of the form ?x geo:hasGeometry ?g . ?g geo:asWKT ?wkt, where all members
of the chain usually appear in the same dataset. The federation engine is tested on distinguishing
which geospatial triple patterns refer to which dataset, thus avoiding to fetch redundant bindings
for the variable in the middle of the chain.

GeoFedBench's GSSBench suite contains many endpoints (27 or 25, depending on which federation
setup is used), which is much higher than other benchmarks in the literature (e.g., FedBench [17]
uses 9 and LargeRDFBench [16] uses 14). This challenges the source selector of a federator w.r.t.
the total number of endpoints of the federation. In addition, notice that each of the endpoints
refer to a speci�c polygonal area; to the best of our knowledge no federated linked geospatial data
benchmark uses such a partitioning. A federation engine that is aware of the boundaries of the
sources it federates should perform better on these queries, we notice that our benchmark tests
whether a federator can exploit the geospatial nature of the source endpoints.

Finally, the complex nature of the queries of GeoFedBench's GDOBench suite challenges query
planning. Current benchmarks usually contain simple queries consisting only joins between triple
patterns and FILTER operations, or some additional operators such as UNION, ORDER, LIMIT, etc.
In GDOBench, Q1 and Q2 use a subquery for discovering the closest INVEKOS instance. Also,
Q2 and Q3 use negation, in the form of the FILTER NOT EXISTS operator to check that there does
not exist and matching Invekos instance. Both subqueries and negation are not present in any of
the currently existing federated SPARQL benchmarks.

D3.5 Evaluation framework for linked geospatial data systems 34

H2020-825258

4. Strabo2 Experiments

In this chapter we present the experimental evaluation of Strabo2 on the Hopsworks cluster that
has been set up in CREODIAS. Strabo2 has been presented in Deliverable D3.7. Speci�cally we
have presented the overall architecture of the system and the query translation process. We have
also presented several improvements in the two di�erent modules of the Strabo2 (loader and query
executor). These improvements include caching of the thematic tables, creation of a persistent
spatial index and partitioning through hybrid translation into both SQL and Java code, and using
JedAI spatial to precompute qualitative spatial relations in order to avoid computations that
involve geometries during query execution. Finally, in D3.7 we include a description of the query
optimization, the SPARQL endpoint and a set of preliminary experiments.

In this chapter we extend the experiments presented in D3.7 with two main objectives. First,
evaluate the system as a whole, including the ability to scale to a PB of initial geospatial RDF data.
Second, evaluate several aspects of the system, and speci�cally the impact of the improvements
that have been presented in D3.7.

4.1 Query Execution Results

In this section we present the query execution times for the synthetic dataset of the Geographica 3
CL generator to generate a dataset with scale factor 16384 and with the ALL_THEMA set to true,
in order to generate all thematic tags. We have also generated 72 queries with spatial selectivities
of 1%, 0.1% and 0.01% and thematic selectivities corresponding to values 4096, 8192 and 16384.
The execution times for all 72 queries are shown in Table 4.1. We have used 22 executors with 6120
MB of memory and 2 virtual cores per executor. The size of the dataset is 156 GB in compressed
parquet format, which corresponds to an initial size of 1.16 TB in NTriples text format. Total
execution time for the 72 queries is 7711 seconds, which gives an average execution time of 107
seconds per query.

Query Execution Time (ms) Spatial Operator
Q01 232044 Selection
Q02 146899 Selection
Q03 147170 Selection
Q04 152111 Selection
Q05 146036 Selection
Q06 147468 Selection
Q07 164569 Selection
Q08 141737 Selection
Q09 137134 Selection
Q10 145127 Join
Q11 134914 Join
Q12 144041 Join
Q13 130845 Join
Q14 134303 Join
Q15 142198 Join
Q16 134373 Join
Q17 133919 Join
Q18 140007 Join
Q19 142181 Join
Q20 145099 Join
Q21 137109 Join
Q22 135898 Join

D3.5 Evaluation framework for linked geospatial data systems 35

H2020-825258

Q23 133025 Join
Q24 142054 Join
Q25 142111 Join
Q26 137723 Join
Q27 134736 Join
Q28 21336 Join
Q29 33408 Join
Q30 33380 Join
Q31 33085 Join
Q32 34876 Join
Q33 33604 Join
Q34 32637 Join
Q35 32478 Join
Q36 32597 Join
Q37 33155 Join
Q38 32862 Join
Q39 34451 Join
Q40 34375 Join
Q41 31425 Join
Q42 32942 Join
Q43 36023 Join
Q44 35866 Join
Q45 36219 Join
Q46 179207 Selection
Q47 148420 Selection
Q48 144277 Selection
Q49 138284 Selection
Q50 144529 Selection
Q51 146904 Selection
Q52 129080 Selection
Q53 143656 Selection
Q54 126967 Selection
Q55 110107 Join
Q56 105515 Join
Q57 101931 Join
Q58 107568 Join
Q59 103107 Join
Q60 104190 Join
Q61 103204 Join
Q62 103652 Join
Q63 102132 Join
Q64 102929 Join
Q65 109412 Join
Q66 101333 Join
Q67 101782 Join
Q68 103916 Join
Q69 108852 Join
Q70 106961 Join
Q71 122739 Join
Q72 111236 Join

Table 4.1: Query Execution Times for Synthetic Dataset Scale 16384

Scalability Experiments In order to provide a complete picture regarding the evaluation of
Strabo2, in this paragraph we describe the scalability experiments that have also been reported in
Deliverable D3.7. We have executed experiments with a varying number of worker nodes, and also

D3.5 Evaluation framework for linked geospatial data systems 36

H2020-825258

executors

sp
ee

du
p

0

20

40

60

80

10 20 30 40 50 60

Linear Scalability Strabo 2

Speed Up - 112 GB Input

Scalability with varying number of Executors

Figure 4.1: Execution with Varying Number of Executors

Input Size (GB)

Ex
ec

ut
io

n
Ti

m
e

(m
s)

0

200000

400000

600000

100 200 300 400

ExecutionTime Ideal speedup

Using 64 executors

Scalability with varying input size

Figure 4.2: Execution with Varying Size of Input Dataset

with a varying dataset size. The results of the �rst set of experiments are shown in Figure 4.1,
where we have executed 36 queries of the Geographica1 synthetic benchmark in an input dataset
of about 112 GB in NTRIPLES �les, with 2, 4, 8, 16, 32 and 64 executors, while the results of
the second set of experiments are shown in Figure 4.2, where we are using 64 executors in order
to execute the 36 queries in datasets of increasing size, starting from 10 GB up to 450 GB.

The two scalability experiments exhibit very good behavior for both spatial selection and spatial
join queries. These experiments had been performed in a cluster operated by Hopsworks, able
to provide almost 1000 virtual cores, whereas in the latest experiments on CREODIAS we are
currently able to use up to 53 virtual cores and 165 GB of memory, with a single node acting as
a datanode. Despite the limited capabilities of the CREODIAS cluster, we were able to handle a
dataset with input Ntriples size of more than 1 TB. This, combined with the scalability results,
leads us to anticipate that Stabo2 is able to handle much larger input datasets, given that more
computing resources are available.

D3.5 Evaluation framework for linked geospatial data systems 37

H2020-825258

4.2 Evaluating Improvements in Query Execution

In order to evaluate the speci�c aspects and improvements in query execution we have used the
Geographica 3 CL generator to generate a dataset with scale factor 1024 and queries for spatial
selectivities of 1%, 0.1% and 0.01% and thematic selectivities corresponding to values 256, 512
and 1024. As before, we set the ALL_THEMA parameter of the generator to true, in order to
generate all thematic tags. In total we have generated 72 queries. The experiments of this section
have been executed with 4 worker nodes, each one with 2 virtual cores and 4096 MB of memory.
All the necessary material in order to reproduce the experiments, includng the exact queries and
instructions to generate the datasets, are available at the github repository of ExtremeEarth 1.

4.2.1 Caching of Thematic Tables

In this set of experiments, we modify the query plan produced by Strabo2 when Spark is going
to execute a distributed sort-merge join between two thematic tables, in any kind of RDF join
(subject to subject, subject to object or object to object joins). In a distributed sort-merge join,
the two tables are hash partitioned on the join key using the same hash method, so records from
the �rst table that match records of the second are placed in the same node. After the hash
partitioning, each partition of each table is sorted, and then a merge join is performed locally in
every node.

During query translation in Strabo2, we identify distributed merge joins, and without overhead
in query evaluation, we cache the intermediate result of sorted and partitioned tables on the join
keys. In subsequent queries we can reuse these cached tables in case of a distributed merge join in
the same key. In order to evaluate the e�ect of thematic caching we have executed the 72 generated
queries sequentially in two sets of execution runs, with the thematic cache enabled and disabled
respectively. In the execution run where this feature is enabled, we start with an empty thematic
cache, that is populated gradually with the execution of each query. The total execution time for
the 72 queries of the benchmark was 407 and 340 seconds respectively, leading to an improvement
of 16% in total execution time.

4.2.2 Hybrid Translation with Persistent Spatial Index and Partitioning

In this setting, during startup we create a spatial index for all geometry tables that exist in the
dataset, and then, during query execution we use the Sedona RDD API in order to access the
spatial index and transform the results back to a dataframe, as described in Deliverable D3.7.
This is only applicable when we want to directly access the original geometry table, and not an
intermediate result that contains geometries. In the latter case the only available option is to
create an index on the �y. According to the execution plan of Strabo2, in the case of a query that
contains both thematic and spatial joins, the thematic �lters and joins are executed �rst, as this
tends to create smaller results. As a result, this optimization is taking place only in the case of
spatial selections. For the 18 queries that contain a spatial selection, the total execution time when
using the persistent spatial index and partitioning, drops from 111 seconds to 54 seconds, leading
to a reduction in execution time of more than 50%.

The exact execution times are shown in Table 4.2. The query execution times in milliseconds are
presented for the default translation (second column) and for the hybrid translation that uses the
permanent spatial index and partitioning (third column). We also present the spatial and thematic
selectivity of each query in fourth and �fth columns respectively.

1https://github.com/ExtremeEarth-Project/Strabo2-Experiments

D3.5 Evaluation framework for linked geospatial data systems 38

H2020-825258

Query Default Translation (ms) Hybrid Translation (ms) Spatial Selectivity Thematic Selectivity
S01 9148 5793 1 256
S02 6616 3808 1 512
S03 6420 2893 1 1024
S04 6840 2912 0.1 256
S05 6540 3136 0.1 512
S06 6428 2674 0.1 1024
S07 6070 2840 0.01 256
S08 5954 2750 0.01 512
S09 5862 2995 0.01 1024
S10 6199 2982 1 256
S11 5872 2591 1 512
S12 5143 2645 1 1024
S13 5736 2837 0.1 256
S14 6196 2554 0.1 512
S15 5541 2822 0.1 1024
S16 5711 2469 0.01 256
S17 5223 2506 0.01 512
S18 5705 2700 0.01 1024
Total 111204 53907

Table 4.2: E�ect of Hybrid Translation in Query Execution

4.2.3 Caching Qualitative Spatial Relations Using JedAI-Spatial

In this set of experiments we have used JedAI-spatial to precompute all spatial relations between
geometries in the dataset, by setting the input dataset as both the source and target dataset
in JedAI con�guration. We used the "export as RDF" functionality of JedAI-spatial to export
the qualitative spatial relations as triples using the corresponding qualitative spatial predicates of
GeoSPARQL. Then, these triples were imported in Strabo2 using the default schema of vertical
partitioning. The process of computing and exporting the spatial relations took 12 minutes. Re-
garding query execution, we observed that for the query set used in our experiments, using the
produced tables instead of computing the spatial relations during query execution, did not provide
gains. Instead, in many cases it led to slower query execution plans. On a closer inspection, the
reason for this behavior is that Strabo2 performs thematic spatial and �lters before the spatial
join. As a result, in the default query execution mode, we limit the size of both input of the
spatial join operator. On the contrary, when we are using the tables that have been created for the
qualitative cache, the whole dataset is accessed for the subsequent distributed sort-merge join. As
a result, the bene�t from avoiding the spatial joins between small inputs is not preferable. In order
to further examine this behavior, we have also tested Strabo2 with queries that access the whole
dataset (thematic selectivity 1). In this set of queries, indeed the use of qualitative spatial index
outperforms the default behaviour. We present the results with respect to the number of results
of all the queries used in the experiment in Figure 4.3. For queries with less than 100 results, the
use of qualitative cache results in worst query execution times. For queries with 100-1000 results,
the two execution modes exhibit similar performance, whereas for queries that access large portion
of the data with many thousands results, the use of qualitative cache outperforms the default
execution mode.

4.3 Datasets and Queries from the Use Cases of ExtremeEarth

From the use cases of ExtremeEarth we have imported in Strabo2 the following datasets:

• For polar use case:

� Ice Charts dataset

� Ship positions dataset

� Global Administrative Areas (GADM) for Norway and the Northern area

D3.5 Evaluation framework for linked geospatial data systems 39

H2020-825258

Number of Results (logscale)

E
xe

cu
tio

n
Ti

m
e

(m
s)

0

50000

100000

150000

10 100 1000 10000 100000 1000000

Qualitative Cache Default Translation

Figure 4.3: E�ect of Qualitative Cache

• For food security use case:

� Crop type maps

� Hydro River Network EU (Danube, Rhine, Elbe)

� Irrigation dataset

� Precipitation dataset

� Snow cover dataset

� Interlinking result between Precipitation and GADM as produced by JedAI-Spatial

The total size of the NTriples text �les is 30GB. Data loading using 8 executors, with 2 virtual
cores and 4GB memory per executor took 80 minutes. Regarding query execution, we have tested
the Strabo2 installation with several real world queries from the two use cases. Below we present
two queries for the polar use case and two queries for the food security use case. For each query we
present the natural language requirement, the GeoSPAQL formulation, the number of results and
the query execution time using 12 executors with 2 virtual cores and 4GB memory per executor.

Query 1 (Polar)

Get all images that correspond to ice map observations that were obtained between 2018-03-03
and 2018-03-01 and the observation CT class name is Close Drift Ice

233 million results in 2 minutes

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX polar: <http://earthanalytics.eu/polar/ontology/>

SELECT ?imgTitle ?imgURL ?imgTN

WHERE {

?x polar:hasRECDAT ?date .

?x polar:hasCT ?ct .

D3.5 Evaluation framework for linked geospatial data systems 40

H2020-825258

?x rdf:type polar:IceObservation .

?x polar:hasCTClassName ?ctName .

?x geo:hasGeometry ?geo1 .

?geo1 geo:asWKT ?wkt1 .

?img rdf:type polar:SatelliteImage .

?img polar:hasURL ?imgURL .

?img polar:hasTitle ?imgTitle .

?img polar:hasThumbnail ?imgTN .

?img geo:hasGeometry ?imgGeo .

?imgGeo geo:asWKT ?imgWKT .

?x polar:belongsToImage ?img .

FILTER (?ct = "79"^^<http://www.w3.org/2001/XMLSchema#string>)

FILTER (?date < "2018-03-03T00:00:00"^^<http://www.w3.org/2001/XMLSchema#dateTime>

&& ?date > "2018-03-01T00:00:00"^^<http://www.w3.org/2001/XMLSchema#dateTime>)

}

Query 2 (Polar)

Get all observations in less than 5km distance from POLYGON ((0.0 0.0, 90.0 0.0, 90.0 77.94970848221368,
0.0 77.94970848221368, 0.0 0.0))

35.000 results in 47 seconds

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX polar: <http://earthanalytics.eu/polar/ontology/>

PREFIX uom: <http://www.opengis.net/def/uom/OGC/1.0/>

SELECT ?wkt1 ?ctName ?date

WHERE {

?x rdf:type polar:IceObservation .

?x polar:hasCT ?ct .

?x polar:hasCTClassName ?ctName .

?x polar:hasRECDAT ?date .

?x geo:hasGeometry ?geo1.

?geo1 geo:asWKT ?wkt1 .

BIND(geof:distance(?wkt1,

"POLYGON ((0.0 0.0, 90.0 0.0, 90.0 77.94970848221368, 0.0 77.94970848221368, 0.0 0.0))"^^geo:wktLiteral, uom:metre)

as ?dist).

FILTER(?dist < 5000).

}

Query 3 (Food Security)

Get Regions a�ected by precipitation in Quarter 2 of 2021 that was lower than 15% of the normal
rainfall and that are equipped with irrigation

12.000 results in 38 seconds

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX fso: <http://ai.di.uoa.gr/fs/ontology/>

SELECT ?pwkt ?ra ?cname ?cwkt

WHERE {

?fsobservation rdf:type fso:FoodSecurityObservation.

?fsobservation fso:hasStartDate "2021-10-01T00:00:00"

D3.5 Evaluation framework for linked geospatial data systems 41

H2020-825258

^^<http://www.w3.org/2001/XMLSchema#dateTime>.

?p fso:belongsTo ?fsobservation.

?p fso:hasPrecipitation ?prec.

?prec fso:hasRelativeAmount ?ra.

?prec geo:hasGeometry ?pgeo.

?pgeo geo:asWKT ?pwkt.

?ir fso:hasCapability ?cap.

?cap rdf:type fso:Capability.

?cap fso:hasClassName ?cname.

?cap geo:hasGeometry ?cgeo.

?cgeo geo:asWKT ?cwkt.

FILTER (geof:sfIntersects(?pwkt, ?cwkt))

FILTER (?ra <-15)

}

Query 4 (Food Security)

Get regions that showed a negative trend in precipitation in Q3 of 2020 but a positive in Q3 in
2019

64 results in 23 seconds

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX fso: <http://ai.di.uoa.gr/fs/ontology/>

SELECT ?pwkt ?ra1 ?ra2

WHERE {

?fsobservation1 rdf:type fso:FoodSecurityObservation.

?fsobservation1 fso:hasStartDate "2020-10-01T00:00:00"^^<http://www.w3.org/2001/XMLSchema#dateTime>.

?p1 fso:belongsTo ?fsobservation1.

?p1 fso:hasPrecipitation ?prec1.

?prec1 fso:hasRelativeAmount ?ra1.

?prec1 geo:hasGeometry ?pgeo1.

?pgeo1 geo:asWKT ?pwkt.

?fsobservation2 rdf:type fso:FoodSecurityObservation.

?fsobservation2 fso:hasStartDate "2019-10-01T00:00:00"^^<http://www.w3.org/2001/XMLSchema#dateTime>.

?p2 fso:belongsTo ?fsobservation2.

?p2 fso:hasPrecipitation ?prec2.

?prec2 fso:hasRelativeAmount ?ra2.

?prec2 geo:hasGeometry ?pgeo2.

?pgeo2 geo:asWKT ?pwkt2.

FILTER (?ra1 < 0)

FILTER (?ra2 > 0)

FILTER(geof:sfEquals(?pwkt, ?pwkt2))

}

D3.5 Evaluation framework for linked geospatial data systems 42

H2020-825258

5. Semagrow Experiments

In this chapter we present the �nal evaluation of Semagrow, developed in Task T3.4, using the
KOBE Benchmarking Engine and the GeoFedBench benchmark, presented in the previous chap-
ters.

5.1 The Semagrow query federation engine

Semagrow is a GeoSPARQL query federation engine. Semagrow provides uni�ed access of linked
geospatial data from multiple, possibly heterogeneous, geospatial data servers. The new version of
Semagrow, was developed during Task T3.4 and presented in Deliverable D3.8 [21].

Our work in ExtremeEarth made Semagrow the �rst engine for federating big geospatial data
sources and performing extreme geospatial analytics. All phases of the federated query processing
(namely source selection, query planning and query execution) of Semagrow were extended, and
Semagrow has been successfully integrated within Hopsworks. In addition, during Task T3.4 we
introduced two novel techniques for federating geospatial linked data; a geospatial source selector
and a federated geospatial join optimization, which have been both evaluated on data and queries
from the use cases of the ExtremeEarth project; both experiments show that each of the techniques
can substantially improve query processing time.

5.2 Evaluation using GSSBench suite of GeoFedBench

In the �rst part of the evaluation of Semagrow, we are using the GSSBench sute of GeoFedBench.
This part of the evaluation extends Section 3.4 of D3.8 (where we evaluated the novel geospatial
selector of Semagrow) in the following aspects: �rst, it contains more endpoints (34 instead of 28
previously), more federation setups (one federation setup that uses approximated shapes in the
dataset metadata), and more queries (a workload of 700 queries instead if 8 previously); and second,
it tests the �nal version of Semagrow instead of only the geospatial source selection component.

5.2.1 Experimental setup

Each dataset is deployed in a separate GeoSPARQL endpoint. We use the Strabon geospatial RDF
store [10] for serving the data. Strabon encapsulates PostGIS for performing spatial operations,
and uses a spatial index to optimize query processing time.

For each federation setup (i.e., the 27-dataset setup and the 25-dataset setup), we set up 4
Semagrow federators, each with a di�erent source selection con�guration. We illustrate the all
the information about the federations used in the experiment in Table 5.1. For each federation,
we display the source selection method, the number of federated endpoints, details and statistics
about the Semagrow metadata used (namely, type of bounding polygon used, metadata size and
number of coordinates that appear all WKT literals of the svd:boundingWKT property), and which
datasets from Table 3.1 used in the federation.

The federators of thm-27 and thm-25 use only thematic metadata (i.e., no geospatial summaries for
the source selector), thus the geospatial source selector is bypassed, while the remaining federators
use not only thematic but geospatial metadata as well, thus the geospatial source selection is used.
The di�erence between the remaining federators is on the accuracy of the bounding polygons that

D3.5 Evaluation framework for linked geospatial data systems 43

H2020-825258

Table 5.1: Federations used in the evaluation using the GSSBench suite.

thm-27 geo-mbb-27 geo-appr-27 geo-poly-27

Source selector thematic geospatial geospatial geospatial
#datasets 27 27 27 27

Bounding WKT -
Min.Bound- Approx. Exact
ing Box shape shape

Meta-

data

#triples 3024 3051 3051 3051
#coords - 108 1998 68736
�le size 125 KB 132 KB 189 KB 1.8 MB

Datasets
gadm1-9 gadm1-9 gadm1-9 gadm1-9
crops1-9 crops1-9 crops1-9 crops1-9
snowS1-9 snowS1-9 snowS1-9 snowS1-9

thm-25 geo-mbb-25 geo-appr-25 geo-poly-25

Source selector thematic geospatial geospatial geospatial
#datasets 25 25 25 25

Bounding WKT -
Min.Bound- Approx. Exact
ing Box shape shape

Meta-

data

#triples 2941 2959 2959 2959
#coords - 100 1360 45852
�le size 123 KB 127 KB 165 KB 1.3 MB

Datasets
gadm1-9 gadm1-9 gadm1-9 gadm1-9
crops1-9 crops1-9 crops1-9 crops1-9
snowG1-7 snowG1-7 snowG1-7 snowG1-7

the sources are tagged with; in geo-poly each source is tagged with the exact polygon that refers to
the corresponding areas (i.e., the geographical grid for snowG datasets and the borders of Austrian
states for the remaining ones); in geo-appr with an approximation of the above polygons a quadtree
of height 2; in geo-mbb with the minimum bounding box of all shapes that appear in the source.
All metadata were created using the Sevod Scraper tool1. The bounding polygons for geo-mbb-25,
geo-mbb-27, geo-appr-25, and geo-appr-27 were calculated by the tool using the minimum bounding
box and quadtree-based approximation, while for geo-poly-25 and geo-poly-27 we used the exact
polygons of the states of Austria and the 4×2 grid according to the actual borders of the partitioned
datasets. Notice that an increased accuracy leads to an increased metadata size (i.e., even though
that the geospatial source selectors use metadata that have the same set of triples, the WKT
literals contain a larger set of coordinates).

Notice that all federations (namely thm-27, geo-mbb-27, geo-appr-27, geo-poly-27, thm-25, geo-mbb-

25, geo-appr-25, geo-poly-25 all refer to the new version of Semagrow, they only di�er w.r.t. the
con�guration. We do not include pre-ExtremeEarth version of Semagrow in the evaluation results,
because the execution plan for these queries is very ine�cient since it contains all sources of the
federation. Thus, the execution phase produces poor results and timeout errors.

We use a Kubernetes 1.14 cluster with 1 master node and 8 worker nodes with a total if 120 cores
and 264GB RAM. Experiment deployment and execution is done through the KOBE benchmarking
engine, and the KOBE con�gurations for reproducing the experiments are publicly available.2.

1https://github.com/semagrow/sevod-scraper
2The experiment speci�cations can be found in https://github.com/semagrow/benchmark-geofedbench as a part

of the geofedbench suite of KOBE.

D3.5 Evaluation framework for linked geospatial data systems 44

https://github.com/semagrow/sevod-scraper
https://github.com/semagrow/benchmark-geofedbench

H2020-825258

5.2.2 Experimental results

In the following, we present the experimental results. We �rst focus on each phase of federated
query processing separately, and then we discuss total query processing as a whole.

Evaluation metrics

All queries are decomposed successfully and for every query a correct execution plan is produced.
However, in some queries the query execution phase evokes an error, and in these situations the
federator returns no answer.

The experimental results are summarized in Tables 5.2, 5.3, 5.4, 5.5, 5.6, and 5.7. For each query
template of Table 3.2 and for each federation of Table 5.1, we display the following evaluation met-
rics: to evaluate the e�ciency of the query execution plan we display the average query execution
time of all successful queries (cf. Table 5.5) and the error rate (cf. Table 5.6), i.e., the number
of the unsuccessful queries over the number of all queries in the template; to check the e�ciency
of the other parts of query processing we display the average source selection time (cf. Table 5.2)
and planning time (cf. Table 5.4); to check if the source selection time overheads are recovered
by reduced planning and execution time, we display the time di�erences between each geospatial
federation with its corresponding thematic one (cf. Table 5.7); to evaluate the e�ciency of the
pruning of each source selection, we display the average number of sources that are accessed during
the evaluation (cf. Table 5.3); and �nally, to check if any source selector achieves optimal pruning,
we include the average size of the optimal source set (cf. opt-27 and opt-25 columns of Table 5.3).

Regarding the time measurements shown in Tables 5.2, 5.4, 5.5, and 5.7, apart from the average
value, we include its standard derivation (displayed in parentheses). Moreover, regarding the
average number of sources in Table 5.3, we include in parentheses the minimum and maximum
number of sources.

Comparison of source selection times

In the following, we focus on the time overheads of the geospatial source selector. Thus, we will
compare the federations of the experiment according to source selection time (cf. Table 5.2).

We observe that the source selectors of thm-27 and thm-25 (in short thm) are the fastest ones; then
we have geo-mbb-27 and geo-mbb-25 (in short geo-mbb); then we have geo-appr-27 and geo-appr-

25 (in short geo-appr); and �nally we have geo-poly-27 and geo-poly-25 (in short geo-poly). This
happens due to two main reasons. First, in thm the geospatial selector is bypassed, while in the
remaining (i.e., geo-mbb, geo-appr and geo-poly) is not, which explains why thm is the fastest of all.
Second, the sources in geo-poly are annotated with polygons, which are more complex shapes than
the approximated shapes in geo-appr, which are, in turn, more complex shapes than the bounding
boxes in geo-mbb. Thus, the boundary comparisons performed by the geospatial source selection
are slower in geo-poly. This di�erence is more pronounced in Q3 and Q7, which include three
geospatial �lters and a within-distance operation (using the geof:distance function), which is
computationally costlier than containment and intersection operations.

We observe that, in general, the source selection process is faster in the federations with 25 end-
points (e.g., compare the source selection time for the queries for geo-poly-25 with geo-poly-27).
This happens not only because in the 27-dataset setup we have two additional endpoints, but mainly
beacuse the snow data in the 25-dataset setup is partitioned using a canonical grid. Therefore, the
boundary annotations of the snow datasets are rectangles not only in geo-mbb-25 (as expected),
but in geo-poly-25 and geo-appr-25 as well. As a result, the geospatial computations performed by
the source selector for identifying irrelevant snow sources is much faster in the 25-dataset setup.

D3.5 Evaluation framework for linked geospatial data systems 45

H2020-825258

Table 5.2: Source Selection time (sec): Average (and standard deviation) over 100 query instances per query template
(Q1 � Q7).

geo-poly-27 geo-appr-27 geo-mbb-27 thm-27

Q1 0.10 (0.02) 0.14 (0.02) 0.13 (0.02) 0.08 (0.01)
Q2 0.87 (0.06) 0.26 (0.02) 0.22 (0.02) 0.13 (0.02)
Q3 8.28 (0.23) 0.74 (0.09) 0.22 (0.03) 0.14 (0.02)
Q4 1.76 (0.14) 0.37 (0.16) 0.21 (0.08) 0.17 (0.07)
Q5 0.42 (0.08) 0.21 (0.02) 0.20 (0.03) 0.26 (0.13)
Q6 1.57 (0.10) 0.37 (0.09) 0.30 (0.11) 0.22 (0.07)
Q7 8.53 (0.24) 1.11 (0.34) 0.42 (0.20) 0.39 (0.26)

geo-poly-25 geo-appr-25 geo-mbb-25 thm-25

Q1 0.16 (0.02) 0.14 (0.02) 0.13 (0.02) 0.08 (0.01)
Q2 0.46 (0.03) 0.14 (0.02) 0.20 (0.02) 0.13 (0.02)
Q3 0.43 (0.04) 0.21 (0.03) 0.19 (0.02) 0.14 (0.08)
Q4 0.36 (0.09) 0.19 (0.04) 0.19 (0.07) 0.16 (0.06)
Q5 0.33 (0.08) 0.29 (0.07) 0.19 (0.02) 0.22 (0.08)
Q6 0.76 (0.07) 0.29 (0.11) 0.28 (0.09) 0.18 (0.04)
Q7 0.83 (0.14) 0.39 (0.14) 0.35 (0.14) 0.41 (0.34)

To sum up, we notice that source selection time depends on the complexity of the bounding polygon
annotations of the sources; in other words, higher accuracy leads to slower source selection.

Comparison of source selection pruning

In the following, we focus on the precision of the pruning of each source selector (cf. Table 5.3).
In particular, we compare the number of sources of each source selector with those of the other
source selectors and with the optimal ones.

We observe that the thematic source selector keeps many irrelevant sources in the query plan.
The source selector of thm exploits the thematic information (i.e., properties and URI-pre�xes)
of the sources and assigns to the administrative (resp. crop, snow) part of the query only the
administrative (resp. crop, snow) sources. Moreover, in Q4-7, the administrative part of the query
is further restricted to a single administrative source, because the pattern that speci�es the name of
the municipality appears in a single administrative source. This explains why, for example, thm-27

keeps 19 (i.e., 9 crop sources, 9 snow sources, and 1 administrative source) and not all 27 sources
for all queries in the template. However, as expected, we will show that the geospatial selectors
of the remaining federations achieve better pruning by exploiting the geospatial knowledge of the
sources.

Regarding the geospatial selectors, we make three observations: First, we notice that the accuracy
of the source selector increases as the accuracy of the source metadata increases. In particular,
geo-poly is more precise than geo-appr, and geo-appr is more precise than geo-mbb. Second, we
notice that the optimal pruning can be achieved only by geo-poly in Q1-3, Q5 (and also in Q4
only for the 27-dataset setup). Finally, the average number of sources for geo-appr and geo-mbb

tend to be lower in Q1-3 than in Q4-7. In the remaining paragraphs we will try to explain these
observations.

Q1-3 have geospatial selection �lters, parameterized with a �xed polygon; thus, the geospatial
selector operates by pruning all sources that are irrelevant according to the given query polygon.
Since the less accurate geospatial summaries in geo-appr and geo-mbb are larger than the actual
dataset boundaries of the sources, we can have a situation where the query polygon is disjoint
from a data source but not disjoint from its bounding polygon annotation. This explains the

D3.5 Evaluation framework for linked geospatial data systems 46

H2020-825258

Table 5.3: Source Selection pruning: number of sources selected by the di�erent source selection methods, average
(minimum and maximmum) over 100 query instances per query template (Q1 � Q7).

opt-27 geo-poly-27 geo-appr-27 geo-mbb-27 thm-27

Q1 1.12 (1-2) 1.12 (1-2) 1.32 (1-3) 1.62 (1-3) 9
Q2 2.24 (2-4) 2.24 (2-4) 2.64 (2-6) 3.24 (2-6) 18
Q3 2.24 (2-4) 2.24 (2-4) 2.64 (2-6) 3.24 (2-6) 18
Q4 2.25 (2-4) 5.48 (3-7) 5.48 (3-7) 5.90 (3-7) 10
Q5 2.00 (2-2) 2.00 (2-2) 5.48 (3-7) 5.82 (3-7) 10
Q6 3.00 (3-3) 3.00 (3-3) 9.96 (5-13) 10.64 (5-13) 19
Q7 3.24 (3-5) 6.48 (4-8) 9.96 (5-13) 10.64 (5-13) 19

opt-25 geo-poly-25 geo-appr-25 geo-mbb-25 thm-25

Q1 1.12 (1-2) 1.12 (1-2) 1.32 (1-3) 1.62 (1-3) 9
Q2 2.18 (2-4) 2.18 (2-4) 2.38 (2-4) 2.68 (2-5) 16
Q3 2.18 (2-4) 2.18 (2-4) 2.38 (2-4) 2.68 (2-5) 16
Q4 2.14 (2-3) 4.34 (2-5) 4.59 (2-5) 4.59 (2-5) 8
Q5 2.00 (2-2) 2.00 (2-2) 5.48 (3-7) 5.82 (3-7) 10
Q6 3.18 (2-4) 4.97 (3-6) 8.82 (4-11) 9.41 (4-11) 17
Q7 3.18 (3-5) 4.97 (3-6) 8.82 (4-11) 9.41 (4-11) 17

optimal pruning for geo-poly (where the annotations are the exact boundaries of the sources). In
the remaining geospatial federations, the source selection returns more sources, because there are
cases where the parameterized polygon is contained in the approximated shape (for geo-appr) or
in the minimum bounding box (for geo-mbb) of a neighbor source. This explains why geo-appr is
equally or more speci�c than geo-mbb.

Q4-7 contain only geospatial join �lters; therefore, the geospatial selector operates as follows; �rst,
similarly to thm, it restricts the administrative part of the query in the source of the state where
the municipality belongs to; then, it tries to prune all irrelevant crop and snow sources according
to the boundary annotation of this administrative source and the geospatial �lters of the query. As
previously, we observe that accurate source descriptions can lead to more precise source selection.
For instance, regarding Q5, geo-mbb (resp. geo-appr) prunes all crop sources that their bounding
box (resp. approximated shape) is disjoint from the bounding box (resp. approximated shape)
of the state of interest, while geo-poly, being more accurate, does better by keeping only the crop
sources that refer this state, because the source boundaries do not overlap. This explains the
optimal pruning of geo-poly for Q5.

Q4-7 present two additional challenges in source selection, which are either non-present or non-
important in Q1-3. First, Q4 and Q8 contain a within-distance federated join operation, but unlike
Q3, the shapes of interest do not intersect with a given polygon in the query. In such operations,
the geospatial selector cannot achieve optimal pruning even in geo-poly. To give an example,
consider Q4 and assume that the given municipality appears towards the center of the state. Since
the exact geometric shape of the municipality will be discovered only during query execution, the
source selector cannot exclude the possibility of its position being towards the border, thus keeping
all the neighboring snow sources that may contain relevant data within 5km from the border of the
state. Second, an overestimation of the set of sources can appear when the geographical partitions
between the data to be geospatially joined are unaligned. Consider Q6; since in the 27-dataset
setup all data layer partitions are geographically aligned (each source refers to a speci�c Austrian
state), geo-poly-27 achieves optimal pruning (i.e., the source selector keeps the sources that refer
to the state where the municipality belongs to). In contrast, since in the 25-dataset setup the snow
data partition is not aligned with the other layers, geo-poly-25 keeps some irrelevant neighboring
snow sources (i.e., those who intersect the state that belongs to the municipality but not the
municipality itself) and thus does not achieve optimal pruning.

To sum up, we notice that the precision of the pruning by the geospatial source selector depends

D3.5 Evaluation framework for linked geospatial data systems 47

H2020-825258

Table 5.4: Query planning time (sec): Average (and standard deviation) over 100 query instances per query template
(Q1 � Q7).

geo-poly-27 geo-appr-27 geo-mbb-27 thm-27

Q1 0.02 (0.01) 0.03 (0.01) 0.03 (0.01) 0.04 (0.01)
Q2 0.28 (0.04) 0.30 (0.03) 0.31 (0.03) 0.39 (0.04)
Q3 0.26 (0.04) 0.24 (0.04) 0.26 (0.03) 0.38 (0.04)
Q4 0.10 (0.02) 0.15 (0.09) 0.13 (0.03) 0.19 (0.07)
Q5 0.12 (0.03) 0.11 (0.02) 0.12 (0.01) 0.15 (0.02)
Q6 13.56 (0.29) 14.48 (0.44) 14.33 (0.40) 16.00 (0.35)
Q7 13.69 (0.31) 14.55 (1.37) 14.81 (2.61) 16.55 (3.95)

geo-poly-25 geo-appr-25 geo-mbb-25 thm-25

Q1 0.03 (0.01) 0.03 (0.01) 0.03 (0.01) 0.05 (0.01)
Q2 0.27 (0.05) 0.21 (0.02) 0.31 (0.02) 0.39 (0.04)
Q3 0.25 (0.05) 0.26 (0.03) 0.26 (0.03) 0.38 (0.05)
Q4 0.13 (0.07) 0.14 (0.10) 0.14 (0.07) 0.19 (0.13)
Q5 0.13 (0.02) 0.12 (0.02) 0.12 (0.01) 0.15 (0.02)
Q6 14.30 (0.49) 14.70 (0.48) 14.27 (0.46) 15.56 (0.29)
Q7 13.66 (0.28) 14.10 (0.46) 14.64 (2.43) 17.24 (6.36)

on the accuracy of the bounding polygon annotations of the sources. We observe that using the
exact polygons of the sources could lead us to optimal pruning. Finally, we notice that in queries
with WKT parameters (Q1-3) the geospatial source selectors tend to achieve a better pruning,
even when using approximated shapes instead of exact polygons.

Comparison of query planning and execution

In the following, we discuss the e�ect of geospatial source selection on query planning and query
execution phases of federated query processing. In particular, we compare the query planning
times (cf. Table 5.4), the query execution times (cf. Table 5.5), and the error rates (cf. Table 5.6)
of each federation of the experiment.

Regarding query planning time, we observe that, in general, geo-poly is the fastest; then it comes
geo-appr; then we have geo-mbb; and �nally thm is the slowest. This behaviour happens because
having a large number of sources requires the construction of a larger query plan, which clearly
a�ects the time for producing it; this is highlighted in Q6 and Q7 which have 14 triple patterns.

Regarding query execution, notice that only for some query templates we obtain a complete eval-
uation of all queries in the template For instance, ∼90% of the queries of Q7 fail to be processed
by thm-27 due to errors in the execution phase (i.e., the error rate in Table 5.6 is equal to 0.9).
These errors occur when a federator issues a huge workload of source queries to the endpoints, and
as a result, the sources are not able to serve all these requests. Therefore, in order to compare two
query executions, we should consider both their query execution times and their error rates. For
instance, consider again Q7; the query execution of thm-27 is faster than that of geo-poly-27, but
the error rate of geo-poly-27 is much lower than that of thm-27. Thus, we argue that geo-poly-27

is more e�ective than thm-27 for Q7, because we believe that having more but slower successful
query runs is a more important characteristic (recall that the average execution time refers only
to successful query runs).

The number of source queries in the execution plan a�ects not only the completion of the execution
but the execution time as well; having more sources in the plan means that more source queries are
issued by the federator to the source endpoints. Consider, for instance, Q2 and Q3; in both cases,

D3.5 Evaluation framework for linked geospatial data systems 48

H2020-825258

Table 5.5: Query execution time (sec): Average (and standard deviation) over 100 query instances per query template
(Q1 � Q7).

geo-poly-27 geo-appr-27 geo-mbb-27 thm-27

Q1 0.06 (0.05) 0.04 (0.03) 0.04 (0.04) 0.06 (0.06)
Q2 0.05 (0.05) 0.04 (0.02) 0.04 (0.02) 0.17 (1.30)
Q3 0.21 (1.20) 0.17 (1.12) 0.17 (1.15) 0.06 (0.25)
Q4 6.87 (4.18) 6.47 (3.49) 6.81 (3.55) 8.52 (4.96)
Q5 0.13 (0.08) 0.08 (0.03) 0.09 (0.06) 0.12 (0.09)
Q6 0.11 (0.05) 2.20 (2.21) 2.18 (2.39) 2.30 (1.47)
Q7 23.19 (67.86) 4.14 (1.63) 4.43 (1.06) 6.64 (2.30)

geo-poly-25 geo-appr-25 geo-mbb-25 thm-25

Q1 0.05 (0.05) 0.04 (0.01) 0.04 (0.01) 0.05 (0.02)
Q2 0.05 (0.05) 0.04 (0.03) 0.04 (0.02) 0.30 (1.32)
Q3 0.19 (1.15) 0.17 (1.09) 0.17 (1.13) 2.52 (10.28)
Q4 7.35 (4.73) 7.33 (4.70) 7.43 (4.77) 8.81 (5.27)
Q5 0.26 (0.41) 0.11 (0.05) 0.08 (0.03) 0.10 (0.04)
Q6 0.77 (0.83) 1.37 (1.10) 1.52 (1.50) 1.46 (1.04)
Q7 19.44 (57.78) 3.10 (2.33) 3.07 (2.37) 38.69 (70.86)

the query execution of geo-poly-25 is faster than that of thm-25 by 1 order of magnitude; geo-poly-
25 consults 1 (or in some cases 2) snow datasets, while thm-25 consults all snow datasets. Even
though Semagrow manages to execute many queries in parallel, the duration of the query execution
has to be as slow as the slowest source. By having a smaller the set of sources, the query executor
avoids issuing queries to irrelevant larger datasets if they contain irrelevant results. Moreover,
the time di�erence in query execution is more pronounced in queries that contain within-distance
operations (e.g. in Q3), because the source endpoints use spatial indexes, hence geospatial queries
that contain standard spatial relations (e.g., Q2) are executed faster.

The above discussion suggests that, according to the e�ectiveness of their query execution (which
is based both on error rate and query execution time), the federators are to be ordered as follows:
geo-poly, geo-appr, geo-mbb, and �nally thm; the only exception being Q6 in the 25-dataset setup.
In this sole case, geo-poly-25 is better than thm-25, but thm-25 has lower error rate than geo-appr-25

and geo-mbb-25. This �nal observation indicates that, even though our geospatial source selector
can provide a faster query processing, it seems that in order to achieve better performance in
geospatial scenarios, the remaining components of federated query processing should be extended
with geospatial-speci�c optimizations as well.

To sum up, we observe that higher accuracy in geospatial source annotations (which results to a

Table 5.6: Error rate: Number of errors divided with the number of queries of each query template (Q1 � Q7).

g
eo

-p
o
ly
-2
7

g
eo

-a
p
p
r-
2
7

g
eo

-m
b
b
-2
7

th
m
-2
7

g
eo

-p
o
ly
-2
5

g
eo

-a
p
p
r-
2
5

g
eo

-m
b
b
-2
5

th
m
-2
5

Q1 - - - - - - - -
Q2 - - - - - - - -
Q3 - - - 0.1 - - - -
Q4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Q5 - - - - - - - -
Q6 - 0.7 0.7 0.8 - 0.7 0.7 0.1
Q7 0.1 0.9 0.9 0.9 0.1 0.9 0.9 0.9

D3.5 Evaluation framework for linked geospatial data systems 49

H2020-825258

Table 5.7: Time overhead of the geospatial source selection: Average (and standard deviation) of the di�erence
in total query processing time (in sec) of each geospatial federation minus the time of its corresponding thematic
one, over the successful query instances of query template Q1 to Q5. A negative measurement indicates that the
geospatial source selection overheads are recovered by faster query planning and execution. Q6 and Q7 are missing
from the table since most queries in geo-appr, geo-mbb, and thm evoke errors during query execution phase.

geo-poly-27 geo-appr-27 geo-mbb-27

Q1 �0.01 (0.0000) +0.03 (0.0000) +0.03 (0.0001)
Q2 +0.51 (0.0013) �0.10 (0.0013) �0.12 (0.0013)
Q3 +8.03 (0.0004) +0.45 (0.0003) �0.05 (0.0002)
Q4 +0.23 (0.0017) �1.28 (0.0018) �1.20 (0.0017)
Q5 +0.14 (0.0002) �0.13 (0.0002) �0.12 (0.0002)

geo-poly-25 geo-appr-25 geo-mbb-25

Q1 +0.05 (0.0000) +0.03 (0.0000) +0.01 (0.0000)
Q2 �0.05 (0.0013) �0.43 (0.0013) �0.27 (0.0013)
Q3 �1.16 (0.0027) �1.39 (0.0027) �1.39 (0.0027)
Q4 �0.71 (0.0028) �1.01 (0.0028) �0.85 (0.0029)
Q5 +0.03 (0.0001) +0.04 (0.0001) �0.09 (0.0001)

lower number of sources per query) could help reducing the query planning time and the number
of source queries issued by the federator, this increasing the e�ectiveness of query execution.

Comparison of overall query processing time

The discussion so far indicates that using a geospatial selector provides a positive impact on query
planning and execution time. However, as the accuracy of the bounding polygons of the federated
sources increases, source selection becomes slower, especially when using the exact polygons (as in
geo-poly). The question that arises is whether the time overhead of the use of exact boundaries in
source selection can be recovered by the remaining phases of query processing.

In Table 5.7, we draw a comparison between the time overheads of the geospatial source selectors;
among the query instances that succeed in all 8 federations, we show the di�erence of the total query
processing time of geo-poly-27 (resp. geo-appr-27, geo-mbb-27) minus the total query processing
time of thm-27; then, the same for the 25-dataset setup; and �nally, we report the average (and
standard deviation) for each query template. We leave out Q6 and Q7 because in both query
templates less than 5 instances succeed in all 6 federations; in this case, we will compare the
federations w.r.t. the error rate (Table 5.6).

Q1 is the easiest query of the experiment (it contains a single data layer and one geospatial selection
�lter, i.e., a �lter that contains a spatial relation in which one of the two parameters is a WKT
value). Thus, all federators perform equally in Q1 (i.e., all time di�erences are less than 0.05
seconds). In contrast, Q6 and Q7 are the most di�cult queries of the experiment (they contain
3 data layers, 3 geospatial joins, and no no WKT literals appear in the query body). Since most
query instances of Q6 and Q7 fail to be processed, we compare the federations w.r.t. Table 5.6; we
note that geo-poly performs the best since it minimizes the error rate.

The remaining queries (i.e., Q2-5) are somewhere in between Q1 and Q6-7 in terms of di�culty;
this fact makes them easier to be processed by all federators of the experiment. In Table 5.7 we
notice that geo-mbb and geo-appr outperform thm and geo-poly (overheads are smaller or similar).
Regarding the comparison between geo-mbb and geo-appr though, we observe that geo-mbb is better
in the 27-dataset setup, while geo-appr is better in the 25-dataset setup. This happens because the
source selection cost in the 27-dataset setup is much higher than that of the 25-dataset setup (cf.
Table 5.2). Thus, in the former setup, only geo-mbb-27 can bene�t from the reduction in query

D3.5 Evaluation framework for linked geospatial data systems 50

H2020-825258

planning and execution times, while in the second one, the drop in planning and execution time of
geo-appr-25 is greater than its source selection overhead.

To sum up, we observe that for di�cult queries (such as queries that contain more than one
geospatial join and no WKT literals in the query body), precise bounding polygons should be
preferred, because otherwise we may face a computationally intensive query execution. In contrast,
the use of less accurate descriptions will su�ce if we consider simpler queries. However, it appears
that no size �ts all; for the setup that the partitions are unaligned, we bene�t from the higher
accuracy of the approximated shapes since one layer is already a geographical grid; while for
the other setup the minimum bounding boxes are e�ective since all data layers are fully aligned
according to the same administrative regions.

5.3 Evaluation using GDOBench suite of GeoFedBench

In the second part of the evaluation of Semagrow, we are using the GDOBench sute of GeoFed-
Bench. This part of the evaluation extends Section 4.4 of D3.8 (where we evaluated the novel
geospatial join optimization of Semagrow) by including a comparison with a setup that does not
use Semagrow at all, but instead a setup where all data (from both datasets) are loaded in a single
PostGIS database.

5.3.1 Experimental setup

For the experimental evaluation of Semagrow, we use two federations; one federation which uses
the �nal version of Semagrow (semagrow-opt) and one federation that uses the �nal version of
Semagrow, but with the geospatial join optimization for within distance queries discussed in Section
4 of D3.8 disabled (semagrow-std). We do not include pre-ExtremeEarth version of Semagrow in
the evaluation results, because the queries of the workload use GeoSPARQL constructs that could
not be handled in the old version. Each dataset is deployed in a separate GeoSPARQL endpoint.
We use the Strabon geospatial RDF store [10] for serving the data. Strabon encapsulates PostGIS
for performing spatial operations, and uses a spatial index to optimize query processing time.

In addition to the federated linked data experiment, we have loaded both datasets in a single
PostGIS database, in order to compare the federated scenario with a centralized solution that uses
only standard PostGIS (postgis). We have translated the queries Q1-3 of GDOBench suite into
their corresponding SQL queries.

We use a Kubernetes 1.14 cluster with 1 master node and 8 worker nodes with a total if 120 cores
and 264GB RAM. Experiment deployment and execution is done through the KOBE benchmarking
engine, and the KOBE con�gurations for reproducing the experiments are publicly available.3.

5.3.2 Experimental results

In the following, we discuss the experimental results of our evaluation. We �rst discuss the im-
provement of the execution time of the query set obtained from the data validation task (Q1-3)
and then we analyze the performance of our optimization technique for various distances (Q4).

3The experiment speci�cations can be found in https://github.com/semagrow/benchmark-geofedbench as a part
of the geofedbench suite of KOBE.

D3.5 Evaluation framework for linked geospatial data systems 51

https://github.com/semagrow/benchmark-geofedbench

H2020-825258

Table 5.8: Experimental results for Q1-3.

query processing time

postgis semagrow-std semagrow-opt

#queries total average total average total average

Q1 2488 54 hours 79 sec 83 hours 120 sec 106 mins 2.6 sec
Q2 2488 54 hours 78 sec 82 hours 119 sec 99 mins 2.4 sec
Q3 2488 54 hours 79 sec 81 hours 117 sec 74 mins 1.8 sec

Data Validation Query Set (Q1-3)

In the �rst part of the experimental study, we compare the optimized (semagrow-opt) version
of Semagrow over the unoptimized one (semagrow-std) and the setup with standalone PostGIS
(postgis) using the query load obtained by the data validation task, i.e., Q1-3 from GDOBench
suite. Table 5.8 contains the experimental results. For every query template, we illustrate: the
number of queries for each template (#queries), and the query processing time. For each federation,
we display the total time to evaluate the query load and the average time for each query of the
query load.

Comparing PostGIS with the unoptimized version of Semagrow, we observe that PostGIS is faster;
i.e., postgis spends 65% of the time of semagrow-std. This is an expected result because having
all data in a centralized PostGIS is faster than performing geospatial joins in a federated setting
(i.e., over HTTP). The two measurments though are roughly in the same order of magnitude. In
contrast, notice that the queries are much faster if we use the optimized version of Semagrow. The
unoptimized version would require several days for the evaluation of the full workload, while with
our optimization technique the total evaluation reduces to several hours. Thus, notice that the
�nal, optimized version of Semagrow is faster than standalone PostGIS in the queries obtained by
land-usage data validation task.

As discussed in Section 4.4 of D3.8, the operation �retrieve all WKTs from INVEKOS within
10m distance from a speci�c WKT (obtained from LUCAS)� is the costliest operation in the data
validation task. As a result, it is safe to conclude that our optimization technique which targets
such queries is the reason for the extreme speed-up of the queries of the experiment.

Within-distance operation from a given LUCAS point (Q4)

In the second part of the experimental study, we compare the optimized (semagrow-opt) over the
unoptimized (semagrow-std) version of Semagrow using a query of fetching all INVEKOS parcels
that are found within increasing distance from a speci�c LUCAS point. Table 5.9 contains the
experimental results. For every instance of the query template Q4, we illustrate: the distance
parameter of the within-distance operation, the query processing time and the number of results
for semagrow-std and semagrow-opt. Moreover, we display the number and percentage of shapes
that are pruned from INVEKOS by the additional �lter that the optimization process places in
the source query that corresponds right part of the federated join.

Regarding semagrow-std, which issues the unoptimized query in INVEKOS, we notice that every
query requires at least 57 seconds. For parameterized distance between 10 meters and 10 kilometers,
the query time is 57 � 58 seconds, even if the result is either very small (2 results) or moderate
(4,700 results). Only for distances greater than 50 kilometers, where we have a very large result
set (greater than 140,000 results), the query time seems to increase as we increase the distance
parameter. This behavior can be explained if we consider that the unoptimized query cannot be
answered using the spatial index of the source, and the source has to check for every shape in
INVEKOS if it is within a speci�c distance. Thus, the experimental results can be explained as

D3.5 Evaluation framework for linked geospatial data systems 52

H2020-825258

Table 5.9: Experimental results for Q4.

query processing time

dis-
tance

#re-
sults

semagrow-std semagrow-opt
shapes pruned by
optimization

Q4 10 m 2 58 sec 0.1 sec 2,008,134 (>99%)
Q4 100 m 7 57 sec 0.1 sec 2,008,129 (>99%)
Q4 1 km 70 58 sec 0.1 sec 2,008,004 (>99%)
Q4 10 km 4,739 57 sec 1.2 sec 1,996,169 (99%)
Q4 50 km 141,973 72 sec 26 sec 1,702,032 (84%)
Q4 100 km 528,026 110 sec 86 sec 1,212,393 (60%)

follows; the time needed to check potential candidates within a given distance is around 1 minute,
and the remaining time is used for passing the results back to the clients. Notice that in our case,
the transfer cost can be relatively high (e.g., 50 seconds for 500,000 results), because the result set
includes WKT values which are in general long strings.

Regarding semagrow-opt, which issues the optimized query in INVEKOS, we notice that the query
processing time is analogous to the size of the distance parameter, i.e., for a smaller distances we
have a faster query processing time. Recall that the optimized source query has an additional
�lter expression, which is used to prune all shapes that are too far away from the given LUCAS
WKT. Indeed, we observe that there exists a connection between the amount of the pruning of the
additional �lter and the query processing time. Unlike previously, where the source had to consider
all shapes from INVEKOS, the source here computes the distance for a reduced set of candidate
shapes, which is relevant to the distance parameter. Moreover, since the geof:sfIntersects func-
tion of the additional �lter can be evaluated using the spatial index, this �lter does not introduce
any time overhead in the evaluation of the query.

Comparing the two approaches, we observe that the optimized version reduces the query processing
time by 3 orders of magnitude for distances less than 1 km and by 2 orders of magnitude for
distances around 10 km. For larger distances, the time di�erence is less pronounced, but in any
case, we can safely conclude that the optimization technique can be e�ective for federated within-
distance queries for any distance length.

5.4 Summary

We evaluated Semagrow using the GeoFedBench benchmark. We observe that the new version of
Semagrow that we have developed during ExtremeEarth was able to provide an e�ective perfor-
mance on the benchmark, even though the queries of GeoFedBench challenge all phases of federated
query processing (cf. Subsection 3.3.4)

Regarding source selection, Semagrow is able to handle e�ectively chains of known properties of
the form ?s geo:hasGeometry ?g.?g geo:asWKT ?wkt which appear in linked geospatial data,
through the use of the extended thematic source selector. Moreover, Semagrow can exploit geospa-
tial dataset metadata to reduce the set of sources that will be tested as potentially holding relevant
data w.r.t. geospatial �lters. Regarding query planning, Semagrow is able to process e�ectively
complex SPARQL constructs (such as subqueries, negation though FILTER NOT EXISTS, etc.).
Moreover, it can evaluate geospatial operation e�ectively, by pushing �lters and joins to its rel-
evant sources through speci�c optimizations. Regarding query execution, we observe that the
implementation of the relevant operations of the GeoSPARQL extension (e.g., through geospatial
join optimization of within-distance queries).

D3.5 Evaluation framework for linked geospatial data systems 53

H2020-825258

The experimental results can be summarized as follows:

• In GSSBench suite of GeoFedBench, the new source selector of Semagrow keeps in average
12% of the federated sources in the query plan when using precise geospatial source metadata
(the corresponding measurement is 100% for pre-ExtremeEarth Semagrow and 9% for the
optimal source set).

• The queries of GDOBench suite of GeoFedBench, which are obtained by the use case of
validating land usage data (joint work with UNITN) are evaluated faster by 2 orders of
magnitude if we use Semagrow federation over 2 GeoSPARQL endpoints instead of placing
all data in a PostGIS database.

D3.5 Evaluation framework for linked geospatial data systems 54

H2020-825258

6. Scale-to-Petabyte experiment

In the �nal part of the evaluation of the linked data tools of querying and federating big linked
geospatial data of ExtremeEarth, we combine the cluster-level scalability results o�ered by Strabo2
with Semagrow's ability to transparently federate multiple such clusters. The aim is to prove that
the combination of these key ExtremeEarth technologies can bring geospatial linked data query
processing to the order of magnitude of PBs.

Unfortunately, we do not have either the data or the infrastructure to experiment at the PB scale.
However, we can show that the Linked Data techniques developed in ExtremeEarth should scale
to PBs. Regarding federated query processing, we can achieve this by using federations with a
high number of endpoints, such that each endpoint behaves as if contained TBs of data.

6.1 Advances in querying and federating big linked geospatial

data

Our work during ExtremeEarth advances the state-of-the-art of federating big linked geospatial
data in several aspects. These aspects include advancements in source selection, query optimiza-
tion, and benchmarking of federated query processors.

The new, sophisticated source selector mechanism of Semagrow [21][Section 5.1] allows distributing
large volumes of data (that scale to PB) without unnecessarily accessing all the data. In particular,
experimental results show that when the source endpoints refer to non-overlapping areas, the
geospatial source selector of Semagrow provides e�ective pruning on the source endpoints that
appear in the query execution plan, thus increasing the e�ectiveness of the overall query processing.

Semagrow has been extended with several optimizations that increase the e�ciency of the query
execution plan. In particular, the new �lter and join pushdown optimizations [21][Section 5.2]
reduce the number of source queries issued by the federator to the source endpoints and reduce the
the number of intermediate query results transferred over the network. Since Semagrow queries
the endpoints e�ciently, it increases the scalability by allowing each member of the federation to
contain a large dataset. For example, if each member of the federation can serve multiple TBs,
then we can have federations of PBs.

Apart from the advancements in federated query processing by Semagrow, during ExtremeEarth
we have also advances in benchmarking of linked data systems. Recall that KOBE can be used to
simulate real-life scenarios through injecting network delays to the source endpoints, which mimic
real-world dataset server latency limitations. However, endpoint delay does not always appear on
situations where we have network problems or a lot of clients that are trying to connect with the
endpoint, but also in cases where the endpoint serves a very large volume of data that is time
consuming to process. As a result, KOBE can be used so that smaller datasets to behave as
larger ones by simulating endpoint delays. Intuitively speaking, if each endpoint �behaves� as if it
contains TBs of data, then the federation �behaves' as if it federates PBs of data.

In the current experimental results, Strabo2 is able to process queries of the synthetic Geographica3
benchmark with an average execution time of 107 seconds over 1.16 TBs of data (in NTriples
format). However, in the two scalability experiments that we have performed, it is suggested that
Stabo2 is able to handle datasets with even larger volumes of data, given that more computing
resources are available.

D3.5 Evaluation framework for linked geospatial data systems 55

H2020-825258

6.2 Experimental setup

In this section we discuss the experimental setup of our evaluation. We make use of synthetic
datasets and queries that are based on those of Geographica2.

Endpoints For our evaluation we use the synthetic dataset of Geographica2 1. We use this
dataset as a initial source in order to construct a federation with 100 endpoints. The endpoints are
created as follows: First, we calculate the minimum bounding box of all shapes in the dataset. We
then split the minimum bounding box into a 10×10 grid, and we create one GeoSPARQL endpoint
for each of the 100 rectangles. We populate each endpoint with triples that correspond to features
from the initial dataset such that their geometry is within the corresponding rectangle. Finally, we
modify the URIs of all resources so that all resources that appear in the same endpoint a common
pre�x, which is unique among the pre�xes of all endpoints of the experiment. The instructions 2

and the code 3 for creating the RDF dumps of the source endpoints are publicly available. We use
Strabon for serving the data. The statistics of the source endpoints can be found in Tables 6.1, 6.2.
In Figure 6.1 we illustrate the area that corresponds to each source endpoint.

Federator con�guration We use Semagrow 4 for federating the 100 source endpoints. The
con�guration of Semagrow is created using a bash script 5. Regarding source selection, Regard-
ing source selection, Semagrow is con�gured to use metadata-based thematic source selector and
geospatial selector (i.e., the source selector that uses ASK queries is disabled in the repository.ttl
con�guration �le).

Queries For the experimental evaluation we used 36 queries, taken from the Geographica2 bench-
mark 6. Information about the queries are illustrated in Table 6.3. All queries contain a single
geospatial �lter, and can be divided in two categories according to the arguments of the �lter.
PBQ00-PBQ23 are geospatial selectors, i.e., the geospatial �lter contains one variable and one
WKT literal:

... ?g geo:asWKT ?w . FILTER(geof:sfWithin(?w, "KNOWN_WKT"^^geo:wktLiteral)) ...

while PBQ24-PBQ35 are geospatial joins, i.e., both arguments of the �lter are variables:

... ?g1 geo:asWKT ?w1 . ?g2 geo:asWKT ?w2 . FILTER(geof:sfWithin(?w1, ?w2)) ...

The queries of the second category are generally considered more di�cult than those of the �rst
category, especially in a federated setting.

Experiment deployment and execution We use a Kubernetes 1.20.7 cluster with 3 master
nodes and 14 worker with a total if 136 cores and 606GB RAM. Experiment deployment and
execution is done through the KOBE benchmarking engine, and the KOBE con�gurations for
reproducing the experiments are publicly available.7. We have executed the experiment 6 times.
In each experiment execution, the endpoints have been con�gured with varying delay parameters,
that is 0 seconds (no delay), 1 second, 10 seconds, 1 minute, 5 minutes, and 10 minutes. Finally,
for every endpoint delay parameter value, each query has been executed 3 times.

1Cf. http://geographica2.di.uoa.gr/datasets/generator_512.tar.xz
2Cf. https://github.com/semagrow/experiment-mandie/blob/master/files/dataset-instructions.txt
3Cf. https://github.com/semagrow/semagrow-geotools
4Cf. https://github.com/semagrow/semagrow/commits/59118ea88d709dea14a19a0c13f5ca7d7075d41a
5Cf. https://github.com/semagrow/experiment-mandie/blob/master/scripts/generate-metadata-ttl.sh
6Cf. http://geographica2.di.uoa.gr/queries/synthetic.lst
7Cf. https://github.com/semagrow/experiment-mandie

D3.5 Evaluation framework for linked geospatial data systems 56

http://geographica2.di.uoa.gr/datasets/generator_512.tar.xz
https://github.com/semagrow/experiment-mandie/blob/master/files/dataset-instructions.txt
https://github.com/semagrow/semagrow-geotools
https://github.com/semagrow/semagrow/commits/59118ea88d709dea14a19a0c13f5ca7d7075d41a
https://github.com/semagrow/experiment-mandie/blob/master/scripts/generate-metadata-ttl.sh
http://geographica2.di.uoa.gr/queries/synthetic.lst
https://github.com/semagrow/experiment-mandie

H2020-825258

Table 6.1: Federated endpoints used in the experiment. For each endpoint we illustrate the number of triples
(#triples), the number of geometries (#geom), the number of tags (#tags), the number of land ownerships (#lo),
the number of states (#st), and the number of points of interest (#poi).

#triples #geom #tags #lo #st #poi #triples #geom #tags #lo #st #poi

PBD00 257 35 38 15 5 15 PBD50 271 37 40 15 7 15
PBD01 201 27 30 15 4 8 PBD51 194 26 29 15 3 8
PBD02 194 26 29 15 3 8 PBD52 201 27 30 15 4 8
PBD03 271 37 40 15 7 15 PBD53 257 35 38 15 5 15
PBD04 215 29 32 15 6 8 PBD54 222 30 33 15 7 8
PBD05 222 30 33 15 7 8 PBD55 222 30 33 15 7 8
PBD06 222 30 33 15 7 8 PBD56 222 30 33 15 7 8
PBD07 271 37 40 15 7 15 PBD57 271 37 40 15 7 15
PBD08 222 30 33 15 7 8 PBD58 226 30 34 15 7 8
PBD09 222 30 33 15 7 8 PBD59 222 30 33 15 7 8
PBD10 257 35 38 15 5 15 PBD60 271 37 40 15 7 15
PBD11 201 27 30 15 4 8 PBD61 194 26 29 15 3 8
PBD12 194 26 29 15 3 8 PBD62 201 27 30 15 4 8
PBD13 271 37 40 15 7 15 PBD63 257 35 38 15 5 15
PBD14 215 29 32 15 6 8 PBD64 222 30 33 15 7 8
PBD15 222 30 33 15 7 8 PBD65 222 30 33 15 7 8
PBD16 222 30 33 15 7 8 PBD66 222 30 33 15 7 8
PBD17 271 37 40 15 7 15 PBD67 271 37 40 15 7 15
PBD18 222 30 33 15 7 8 PBD68 222 30 33 15 7 8
PBD19 222 30 33 15 7 8 PBD69 222 30 33 15 7 8
PBD20 271 37 40 15 7 15 PBD70 271 37 40 15 7 15
PBD21 201 27 30 15 4 8 PBD71 194 26 29 15 3 8
PBD22 201 27 30 15 4 8 PBD72 201 27 30 15 4 8
PBD23 271 37 40 15 7 15 PBD73 257 35 38 15 5 15
PBD24 222 30 33 15 7 8 PBD74 222 30 33 15 7 8
PBD25 222 30 33 15 7 8 PBD75 215 29 32 15 6 8
PBD26 229 31 34 15 8 8 PBD76 222 30 33 15 7 8
PBD27 278 38 41 15 8 15 PBD77 271 37 40 15 7 15
PBD28 229 31 34 15 8 8 PBD78 222 30 33 15 7 8
PBD29 222 30 33 15 7 8 PBD79 222 30 33 15 7 8
PBD30 271 37 40 15 7 15 PBD80 271 37 40 15 7 15
PBD31 201 27 30 15 4 8 PBD81 201 27 30 15 4 8
PBD32 201 27 30 15 4 8 PBD82 201 27 30 15 4 8
PBD33 271 37 40 15 7 15 PBD83 271 37 40 15 7 15
PBD34 222 30 33 15 7 8 PBD84 222 30 33 15 7 8
PBD35 222 30 33 15 7 8 PBD85 222 30 33 15 7 8
PBD36 222 30 33 15 7 8 PBD86 222 30 33 15 7 8
PBD37 278 38 41 15 8 15 PBD87 278 38 41 15 8 15
PBD38 229 31 34 15 8 8 PBD88 229 31 34 15 8 8
PBD39 222 30 33 15 7 8 PBD89 222 30 33 15 7 8
PBD40 271 37 40 15 7 15 PBD90 271 37 40 15 7 15
PBD41 194 26 29 15 3 8 PBD91 201 27 30 15 4 8
PBD42 201 27 30 15 4 8 PBD92 201 27 30 15 4 8
PBD43 257 35 38 15 5 15 PBD93 271 37 40 15 7 15
PBD44 222 30 33 15 7 8 PBD94 222 30 33 15 7 8
PBD45 215 29 32 15 6 8 PBD95 222 30 33 15 7 8
PBD46 222 30 33 15 7 8 PBD96 229 31 34 15 8 8
PBD47 271 37 40 15 7 15 PBD97 278 38 41 15 8 15
PBD48 222 30 33 15 7 8 PBD98 229 31 34 15 8 8
PBD49 222 30 33 15 7 8 PBD99 222 30 33 15 7 8

Table 6.2: Statistics about the federated endpoints used in the experiment. (Total and Average values of the
measurements of Table 6.1).

#triples #geom #tags #lo #st #poi

total 23170 3138 3439 1500 628 1010
average 231.7 31.4 34.4 15.0 6.3 10.1

D3.5 Evaluation framework for linked geospatial data systems 57

H2020-825258

Table 6.3: Information about the queries used in the experiment. For each query we illustrate the number of triple
patterns (#tp), whether the query is a geospatial selection or a geospatial join (type), the geospatial relation of the
�lter (relation), and for geospatial selections, the area of the parameterized shape that appears in the query w.r.t.
the total area (area).

#tp type relation area #tp type relation area

PBQ00 4 Selection Intersects 100% PBQ18 4 Selection Within 25%

PBQ01 4 Selection Intersects 100% PBQ19 4 Selection Within 25%

PBQ02 4 Selection Intersects 75% PBQ20 4 Selection Within 10%

PBQ03 4 Selection Intersects 75% PBQ21 4 Selection Within 10%

PBQ04 4 Selection Intersects 50% PBQ22 4 Selection Within 1%

PBQ05 4 Selection Intersects 50% PBQ23 4 Selection Within 1%

PBQ06 4 Selection Intersects 25% PBQ24 8 Join Intersects �

PBQ07 4 Selection Intersects 25% PBQ25 8 Join Intersects �

PBQ08 4 Selection Intersects 10% PBQ26 8 Join Intersects �

PBQ09 4 Selection Intersects 10% PBQ27 8 Join Intersects �

PBQ10 4 Selection Intersects 1% PBQ28 8 Join Touches �

PBQ11 4 Selection Intersects 1% PBQ29 8 Join Touches �

PBQ12 4 Selection Within 100% PBQ30 8 Join Touches �

PBQ13 4 Selection Within 100% PBQ31 8 Join Touches �

PBQ14 4 Selection Within 75% PBQ32 8 Join Within �

PBQ15 4 Selection Within 75% PBQ33 8 Join Within �

PBQ16 4 Selection Within 50% PBQ34 8 Join Within �

PBQ17 4 Selection Within 50% PBQ35 8 Join Within �

Figure 6.1: The 10 × 10 grid used to partition the data of the dataset. Each cell corresponds to a GeoSPARQL
endpoint.

D3.5 Evaluation framework for linked geospatial data systems 58

H2020-825258

6.3 Experimental results

In Table 6.4 we illustrate the experimental results. We split the time measurements for each phace
of the federated query processing, namely source selection time, query planning time, and query
execution time, and for each phase we provide the time measurement for each endpoint delay
parameter. Moreover, in Table 6.5 we provide a summary of the results of the previous table.
In the following, we will discuss the performance for each phase of federated query processing in
detail.

Regarding source selection time, we observe that in PBQ00-PBQ23 we spend 0.4-0.9 seconds.
while in PBQ24-PBQ36 we spend 1.1-1.4 seconds. It is not hard to see that source selection time
depends on the number of triple patterns of the query. Thus, this di�erence can be explained by
the fact that queries PBQ00-PBQ23 comprise 4 triple patterns each, while queries PBQ24-PBQ36
di�erence 8 triple patterns each. Moreover, we do not observe any correlation between source
selection time and endpoint delay, and depends only on the query itself and not in the size of the
federated data. This can be explained due to the fact that in our experimental setup the source
selection of Semagrow is based solely on dataset metadata and does not make use of ASK queries.
Since the schema of the data does not change, neither the size of the metadata do. Finally, we
observe that for the queryset of the experiment, Semagrow spends on source selection at most 1.4
seconds.

Regarding source selection pruning (column #s), we observe that we have a very good pruning
of the number of sources that appear in the query execution plan. In queries PBQ00-PBQ23
(i.e., the geospatial selection queries of the experiment) the number of sources that the source
selection keeps is analogous to the area of the parameterized shape that appears in the query. For
instance, consider PBQ02, which returns features within a WKT of area equal to 75% of the total
experiment area. In this query, the source selector keeps 81 (of total 100) sources of the experiment,
or equivalently it prunes 19 irrelevant sources. In the remaining queries of the experiment, the
source selector keeps all 100 sources in the plan because these queries contain geospatial joins and
require data from all sources of the experiment.

Regarding query planning, the new version of the Semagrow planner operates by checking whether
a set of triple patterns (with their corresponding �lters) can be grouped in the same subquery if the
patterns are assigned the same set of sources by the source selector and these sources are disjoint
(two sources are disjoint if no URI appears in both sources and all WKT literals are disjoint) 8.
Notice that the query planning time is very short and less than 4 seconds for every query; this
happens because the test whether this optimization is applicable occurs early in the process of
query planning, thus speeding up the computation of the query plan. Moreover, notice that query
planning time clearly is related to the number of sources that the source selector produced; this
fact showcases that for the queries of the experiment, even in a high number of disjoint sources,
the planning time is acceptable from a practical point of view (for 1 source it is less than 0.05 sec,
for 100 sources it is around 3.5 sec). As with source selection time, the query planning time does
not depend on the endpoint delay.

Naturally, query execution time is the only time measurement that clearly depends on the endpoint
delay, because in this phase the federator communicates with the source endpoints in order to
evaluate the query execution plan. In particular, we notice that for delays ≥ 10 seconds the query
execution time is (almost) equal to the endpoint delay. This fact can be explained as follows: First,
according to its execution plan, each query of the experiment is evaluated by issuing the query as
is in all relevant source endpoints and then by calculating the union of the query results of the
individual queries � since all sources are disjoint, there are no shapes that belong to more than
one sources (PBQ00-PBQ23), and there is no shape that intersects/touches/is within any other
shape that belongs to another source (PBQ24-PBQ35). Therefore, the reason why query execution
time is equal to the endpoint delay, is because the source queries are evaluated in parallel, and the

8Cf. https://github.com/semagrow/semagrow/pull/88

D3.5 Evaluation framework for linked geospatial data systems 59

https://github.com/semagrow/semagrow/pull/88

H2020-825258

Table 6.4: Experimental results. We illustrate source selection time, query planning time and query execution time,
for each experiment execution. Each experiment is characterized by its delay (namely 0s (no delay), 1s, 10s, 1m,
5m, and 10m). All times are average times of 3 runs, and are displayed in seconds. Moreover, we illustrate the
number of sources that appear in the execution plan (#s), and the number of results of each query (#r), which are
the same for all experiment executions.

source selection time query planning time query execution time #s #r
0s 1s 10s 1m 5m 10m 0s 1s 10s 1m 5m 10m 0s 1s 10s 1m 5m 10m all all

PBQ00 0.9 0.9 0.9 0.9 0.8 0.9 3.5 3.6 3.2 3.6 3.3 3.2 1.0 1.7 11.1 61.0 301.0 601.2 100 1500
PBQ01 0.8 0.8 0.6 0.7 0.7 0.6 3.4 3.4 2.9 3.4 3.0 3.0 0.1 1.2 10.2 60.2 300.2 600.2 100 100
PBQ02 0.7 0.7 0.6 0.7 0.6 0.6 2.1 2.1 1.9 2.2 1.8 1.8 0.1 1.2 10.1 60.2 300.2 600.2 81 1215
PBQ03 0.6 0.6 0.6 0.7 0.6 0.6 2.1 2.1 1.8 2.1 1.8 1.8 0.1 1.1 10.1 60.2 300.1 600.2 81 81
PBQ04 0.6 0.6 0.5 0.6 0.5 0.5 1.3 1.3 1.1 1.3 1.1 1.2 0.1 1.1 10.1 60.1 300.1 600.1 64 735
PBQ05 0.6 0.6 0.5 0.6 0.5 0.6 1.3 1.3 1.1 1.3 1.1 1.1 0.1 1.1 10.1 60.1 300.1 600.1 64 49
PBQ06 0.6 0.6 0.5 0.6 0.5 0.5 0.4 0.4 0.4 0.4 0.3 0.3 0.1 1.1 10.1 60.1 300.1 600.1 36 375
PBQ07 0.6 0.6 0.5 0.6 0.5 0.5 0.4 0.4 0.3 0.4 0.3 0.3 0.1 1.1 10.1 60.1 300.1 600.1 36 25
PBQ08 0.6 0.5 0.5 0.6 0.5 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.0 1.0 10.1 60.1 300.1 600.1 16 135
PBQ09 0.5 0.6 0.5 0.6 0.5 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.0 1.0 10.1 60.1 300.1 600.1 16 9
PBQ10 0.5 0.5 0.5 0.5 0.4 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 10.0 60.0 300.1 600.1 1 0
PBQ11 0.5 0.5 0.4 0.5 0.4 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 10.0 60.0 300.0 600.1 1 0
PBQ12 0.6 0.6 0.5 0.6 0.5 0.5 3.2 3.2 2.7 3.2 2.6 2.8 0.1 1.2 10.2 60.2 300.1 600.2 100 1010
PBQ13 0.6 0.6 0.5 0.6 0.6 0.5 3.2 3.2 2.8 3.2 2.8 2.8 0.1 1.1 10.1 60.1 300.1 600.1 100 100
PBQ14 0.6 0.6 0.5 0.6 0.6 0.6 2.0 2.0 1.8 2.1 1.7 1.8 0.1 1.1 10.1 60.1 300.1 600.1 80 762
PBQ15 0.6 0.6 0.5 0.6 0.5 0.5 2.0 2.0 1.7 2.0 1.7 1.7 0.1 1.1 10.1 60.1 300.1 600.1 80 70
PBQ16 0.6 0.6 0.5 0.6 0.5 0.5 1.1 1.1 1.0 1.2 1.0 1.0 0.1 1.1 10.1 60.1 300.1 600.1 60 505
PBQ17 0.6 0.6 0.5 0.6 0.5 0.5 1.1 1.2 1.0 1.2 1.0 1.0 0.1 1.1 10.1 60.1 300.1 600.1 60 50
PBQ18 0.6 0.6 0.5 0.6 0.5 0.5 0.3 0.3 0.2 0.3 0.2 0.2 0.1 1.1 10.1 60.1 300.1 600.1 30 257
PBQ19 0.6 0.6 0.5 0.6 0.5 0.5 0.3 0.3 0.2 0.3 0.2 0.2 0.0 1.1 10.1 60.1 300.1 600.1 30 20
PBQ20 0.5 0.5 0.5 0.6 0.4 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 10.1 60.0 300.1 600.1 10 101
PBQ21 0.5 0.5 0.4 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 10.1 60.0 300.1 600.1 10 10
PBQ22 0.5 0.6 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 10.0 60.0 300.1 600.1 10 0
PBQ23 0.5 0.6 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 10.0 60.1 300.1 600.1 10 0
PBQ24 1.3 1.4 1.1 1.4 1.2 1.2 3.2 3.2 2.7 3.2 2.7 2.8 0.1 1.2 10.2 60.2 300.2 600.2 100 2360
PBQ25 1.3 1.4 1.1 1.4 1.2 1.2 3.2 3.2 2.7 3.2 2.8 2.8 0.1 1.1 10.1 60.2 300.1 600.1 100 80
PBQ26 1.3 1.4 1.1 1.4 1.2 1.1 3.2 3.2 2.7 3.2 2.7 2.7 0.4 1.1 10.1 60.2 300.1 600.1 100 197
PBQ27 1.3 1.3 1.2 1.4 1.2 1.2 3.2 3.2 2.7 3.2 2.8 2.7 0.1 1.1 10.1 60.2 300.2 600.1 100 14
PBQ28 1.3 1.3 1.1 1.3 1.2 1.2 3.2 3.2 2.7 3.2 2.8 2.8 0.2 1.2 10.1 60.2 300.1 600.1 100 1140
PBQ29 1.3 1.3 1.1 1.4 1.2 1.2 3.2 3.2 2.7 3.2 2.8 2.8 0.1 1.2 10.1 60.2 300.1 600.2 100 139
PBQ30 1.3 1.4 1.2 1.4 1.2 1.2 3.2 3.2 2.8 3.2 2.7 2.8 0.1 1.2 10.1 60.2 300.1 600.1 100 139
PBQ31 1.3 1.3 1.2 1.4 1.2 1.1 3.2 3.2 2.7 3.2 2.8 2.7 0.1 1.1 10.1 60.2 300.1 600.1 100 0
PBQ32 1.4 1.4 1.2 1.3 1.2 1.2 3.2 3.2 2.7 3.2 2.8 2.8 0.1 1.2 10.1 60.2 300.1 600.2 100 1010
PBQ33 1.3 1.4 1.2 1.4 1.2 1.2 3.2 3.3 2.7 3.2 2.8 2.8 0.1 1.1 10.1 60.2 300.1 600.1 100 88
PBQ34 1.3 1.3 1.2 1.4 1.1 1.2 3.2 3.2 2.8 3.2 2.7 2.8 0.1 1.1 10.1 60.1 300.1 600.1 100 100
PBQ35 1.3 1.3 1.2 1.4 1.1 1.2 3.2 3.2 2.7 3.2 2.8 2.8 0.1 1.1 10.1 60.1 300.1 600.1 100 45

Table 6.5: Experimental results. Summary of Table 6.4. We illustrate average source selection time according to the
number of the triple patterns of the query, average planning time according to the number of sources that appear
in the plan, average query execution time according to the endpoint delay.

#triple
patterns

source
selection
time (s)

#sources
in the plan

query
planning
time (s)

endpoint
delay (s)

query
execution
time (s)

4 0.62 100 3.01 0 0.11
8 1.26 ∼ 80 1.92 1 1.12

∼ 60 1.14 10 10.13
∼ 30 0.30 60 60.15
∼ 10 0.05 300 300.13

1 0.00 600 600.15

D3.5 Evaluation framework for linked geospatial data systems 60

H2020-825258

federator simply passes all query results from the source endpoints to the client. Finally, we notice
that the queries of the experiment return a small number of results each, which is an expected
behavior because the federated sources contain a small number of triples and shapes.

To summarize, we observe that for 100 disjoint source endpoints (i.e. no URI belongs to more
than one sources and all pairs of shapes that belong to di�erent sources are disjoint), the sum of
source selection time and the query planing time for each query is less than 5 sec. As a result,
since the query execution time is (almost) equal to the endpoint delay, for delays greater than 1
minute the overall query processing time is equal to the endpoint delay. We note though that since
the queries of our experiment returned a small number of results, this evaluation is suited mainly
for needle-in-a-haystack querying scenarios; that is federated queries that the queries issued by the
federator return a small number of results.

6.4 Summary

In this chapter, we performed a federated experiment that uses queries from the Geographica2
benchmark, which can be used for showing scalability to PBs of the linked data tools of Ex-
tremeEarth. In particular, we combine the cluster-level scalability results o�ered by Strabo2 with
Semagrow's ability to transparently federate multiple such clusters. The aim is to prove that
the combination of these key ExtremeEarth technologies can bring geospatial linked data query
processing to the order of magnitude of PBs.

In this experiment, Semagrow evaluates a set of needle-in-a-haystack queries over a federation
of 100 disjoint GeoSPARQL endpoints that behave as if they contained larger volumes of data
through KOBE's simulated endpoint delay. We observe that the overall query processing time is
equal to the endpoint delay. This result, suggests that if the federated endpoint can process TBs
of data in an acceptable time, then a Semagrow federation can process 100 such endpoints (i.e.,
PBs of data) in acceptable time.

D3.5 Evaluation framework for linked geospatial data systems 61

H2020-825258

7. Conclusions

In this deliverable, we develop an evaluation framework for big linked geospatial data systems.
This framework comprises a benchmarking engine and a set of benchmarks for linked geospatial
data systems. In addition, this deliverable contains the �nal experimental evaluation of Strabo2
and Semagrow.

We presented the KOBE Benchmarking Engine, an open-source benchmarking engine that reads
declarative benchmark and experiment de�nitions and uses modern containerization and Cloud
computing technologies for automating the process of deployment, initialization, and experiment
execution processes. The engine o�ers simulation of realistic endpoint delays and provides collec-
tion of logs and visualization of the experiment results using a WebUI. We have used KOBE for
conducting our experiments.

We provided three new benchmarks for linked geospatial data. First, the Geographica2 benchmark,
for evaluating single node linked geospatial stores; second, the Geographica3 CL benchmark, for
evaluating distributed big linked geospatial stores; and �nally, the GeoFedBench benchmark for
evaluating federated linked geospatial data engines. These benchmark are integrated in KOBE
and make use of datasets and queries from the use cases of ExtremeEarth.

We presented the experimental evaluation of Strabo2. First, we used the Geographica3 synthetic
dataset to generate a dataset with size 1.16 TB in NTriples text format, store it in the Hopsworks
deployment in CREODIAS, and execute queries produced by the benchmark with an average
execution time of 107 seconds. Then, we evaluated speci�c aspects of the system. We found that
the caching of thematic tables leads to an improvement of 16% n execution time for our query
set, whereas the use of persistent spatial index and partitioning leads to a reduction of more than
50% for the queries that contain spatial selections. The use of JedAI-Spatial in order to cache
the qualitative spatial relations between the geometries of the dataset is not bene�cial for very
selective queries, but it has important impact on queries that access a large portion of the dataset.
Finally we presented the execution times for real world queries and datasets from the use cases,
which in most cases vary from few seconds to a few minutes.

We presented the experimental evaluation of the new version of Semagrow. First, we used Ge-
oFedBench: we observed that Semagrow achieves a good perfrmance, even though GeoFedBench
presents many challenges in all phases of federated query processing, both thematically and geospa-
tially. Regarding source selection, we observed that the new source selection of Semagrow re-
duces the number sources that appear in the execution plans of the queries of GSSBench suite by
88% (comparing to the pre-ExtremeEarth version). Regarding query execution, we observed that
Semagrow is faster than standalone PostGIS by 2 orders of magnitude in the queries of GDOBench
suite.

Finally, we demonstrated scalability to Petabytes of data by combining the cluster-level scalability
results o�ered by Strabo2 with Semagrow's ability to transparently federate multiple such clusters.
In particular, we conducted an experiment which uses a Semagrow federation of 100 GeoSPARQL
endpoints that behave as if they contained larger volumes of data through KOBE's simulated
endpoint delay, and we used data and a series of needle-in-a-haystack queries from Geographica2
benchmark. We observed that the overall query processing time of Semagrow is equal to the
endpoint delay. Intuitively speaking, this means that if each endpoint �behaves� as if it contains
TBs of data and processes queries in an acceptable time, then the federation �behaves' as if it
federates PBs of data and processes queries in an acceptable time.

D3.5 Evaluation framework for linked geospatial data systems 62

H2020-825258

Bibliography

[1] Maribel Acosta, Maria-Esther Vidal, and York Sure-Vetter. Die�ciency metrics: Measuring
the continuous e�ciency of query processing approaches. In Proceedings of the 16th Interna-
tional Semantic Web Conference (ISWC 2017). Springer, 2017.

[2] Andreas Brodt, Daniela Nicklas, and Bernhard Mitschang. Deep integration of spatial query
processing into native RDF triple stores. In 18th ACM SIGSPATIAL International Symposium
on Advances in Geographic Information Systems, ACM-GIS 2010, November 3-5, 2010, San
Jose, CA, USA, Proceedings, pages 33�42, 2010.

[3] Angelos Charalambidis, Antonis Troumpoukis, and Stasinos Konstantopoulos. SemaGrow:
Optimizing federated SPARQL queries. In Proceedings of the 11th International Conference
on Semantic Systems (SEMANTiCS 2015), Vienna, Austria, 16�17 September 2015, 2015.

[4] George Garbis, Kostis Kyzirakos, and Manolis Koubarakis. Geographica: A benchmark for
geospatial RDF stores. In Proceedings of the 12th International Semantic Web Conference
(ISWC 2013). Sydney, Australia, 21-25 October 2013, 2013.

[5] Olaf Görlitz and Ste�en Staab. SPLENDID: SPARQL endpoint federation exploiting VOID
descriptions. In Proceedings of the 2nd International Workshop on Consuming Linked Data
(COLD 2011), Bonn, Germany, October 23, 2011, volume 782 of CEUR Workshop Proceed-
ings, 2011.

[6] Yuanbo Guo, Zhengxiang Pan, and Je� He�in. LUBM: a benchmark for OWL knowledge
base systems. Web Semantics, 3(2), July 2005.

[7] Theo�los Ioannidis, George Garbis, Kostis Kyzirakos, Konstantina Bereta, and Manolis
Koubarakis. Evaluating geospatial RDF stores using the benchmark geographica 2. J. Data
Semant., 10(3-4):189�228, 2021.

[8] Charalampos Kostopoulos, Giannis Mouchakis, Nefeli Prokopaki-Kostopoulou, Antonis
Troumpoukis, Angelos Charalambidis, and Stasinos Konstantopoulos. KOBE: Cloud-native
open benchmarking engine for federated query processors. Demonstration at the 19th Inter-
national Semantic Web Conference (ISWC 2020), 2-6 November 2020, 2020.

[9] Charalampos Kostopoulos, Giannis Mouchakis, Antonis Troumpoukis, Nefeli Prokopaki-
Kostopoulou, Angelos Charalambidis, and Stasinos Konstantopoulos. KOBE: cloud-native
open benchmarking engine for federated query processors. In Proceedings of ESWC 2021,
June 2021.

[10] Kostis Kyzirakos, Manos Karpathiotakis, and Manolis Koubarakis. Strabon: A semantic
geospatial DBMS. In Philippe Cudré-Mauroux, Je� He�in, Evren Sirin, Tania Tudorache,
Jérôme Euzenat, Manfred Hauswirth, Josiane Xavier Parreira, Jim Hendler, Guus Schreiber,
Abraham Bernstein, and Eva Blomqvist, editors, The Semantic Web - ISWC 2012 - 11th
International Semantic Web Conference, Boston, MA, USA, November 11-15, 2012, Proceed-
ings, Part I, volume 7649 of Lecture Notes in Computer Science, pages 295�311. Springer,
2012.

[11] Kostis Kyzirakos, Dimitrianos Savva, Ioannis Vlachopoulos, Alexandros Vasileiou, Nikolaos
Karalis, Manolis Koubarakis, and Stefan Manegold. GeoTriples: Transforming geospatial data
into RDF graphs using R2RML and RML mappings. J. Web Semant., 52-53:16�32, 2018.

[12] Axel-Cyrille Ngonga Ngomo and Michael Röder. HOBBIT: Holistic benchmarking for big
linked data. In Processings of the ESWC 2016 EU Networking Session, 2016.

[13] Claudia Paris, Lorenzo Bruzzone, TorbjÃ¸rn Eltoft, Thomas KrÃ¦mer, Andrea Marinoni,
Salman Khaleghian, Corneliu Octavian Dumitru, and Mihai Datcu. Large training database.
Technical Report Public Deliverable D2.1, ExtremeEarth Project, December 2019.

D3.5 Evaluation framework for linked geospatial data systems 63

H2020-825258

[14] Norman W. Paton, M. Howard Williams, Kosmas Dietrich, Olive Liew, Andrew Dinn, and
Alan Patrick. VESPA: A Benchmark for Vector Spatial Databases. In Advances in Databases,
17th British National Conference on Databases, BNCOD 17, Exeter, UK, July 3-5, 2000,
Proceedings, pages 81�101, 2000.

[15] Suprio Ray, Bogdan Simion, and Angela Demke Brown. Jackpine: A benchmark to evaluate
spatial database performance. In Proceedings of the 27th International Conference on Data
Engineering, ICDE 2011, April 11-16, 2011, Hannover, Germany, pages 1139�1150, 2011.

[16] Muhammad Saleem, Ali Hasnain, and Axel-Cyrille Ngonga Ngomo. Largerdfbench: A billion
triples benchmark for SPARQL endpoint federation. J. Web Semant., 48:85�125, 2018.

[17] Michael Schmidt, Olaf Görlitz, Peter Haase, Günter Ladwig, Andreas Schwarte, and Thanh
Tran. FedBench: A benchmark suite for federated semantic data query processing. In Pro-
ceedings of the 10th International Semantic Web Conference (ISWC 2011), Bonn, Germany,
23-27 October 2011, volume 7031 of Lecture Notes in Computer Science. Springer, 2011.

[18] Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and Michael Schmidt. FedX: A
federation layer for distributed query processing on Linked Open Data. In Proceedings of the
8th Extended Semantic Web Conference (ESWC 2011), Heraklion, Crete, Greece, May 29 �
June 2, 2011, volume 6644 of Lecture Notes in Computer Science, pages 481�486. Springer,
2011.

[19] Antonis Troumpoukis, Angelos Charalambidis, Giannis Mouchakis, Stasinos Konstantopou-
los, Ronald Siebes, Victor de Boer, Stian Soiland-Reyes, and Daniela Digles. Developing
a benchmark suite for Semantic Web data from existing work�ows. In Proceedings of the
Benchmarking Linked Data Workshop (BLINK), held at the 15th International Semantic Web
Conference (ISWC 2016), Kobe, Japan, 18 October 2016, 2016.

[20] Antonis Troumpoukis, Stasinos Konstantopoulos, Giannis Mouchakis, Nefeli Prokopaki-
Kostopoulou, Claudia Paris, Lorenzo Bruzzone, Despina-Athanasia Pantazi, and Manolis
Koubarakis. GeoFedBench: A benchmark for federated GeoSPARQL query processors. In
Proceedings of the Posters and Demos Session of the 19th International Semantic Web Con-
ference (ISWC 2020), 2-6 November 2020., 2020.

[21] Antonis Troumpoukis, Nefeli Prokopaki-Kostopoulou, Giannis Mouchakis, and Stasinos Kon-
stantopoulos. Software for federating big linked geospatial data sources � version 2. Technical
Report Public Deliverable D3.8, ExtremeEarth Project, June 2021.

[22] Ruben Verborgh, Miel Vander Sande, Olaf Hartig, Joachim Van Herwegen, Laurens De Vocht,
Ben De Meester, Gerald Haesendonck, and Pieter Colpaert. Triple pattern fragments: A low-
cost knowledge graph interface for the web. Journal of Web Semantics, 37�38, 2016.

D3.5 Evaluation framework for linked geospatial data systems 64

	Introduction
	The KOBE Benchmarking Engine
	Introduction
	Benchmarking Concepts and Requirements
	Data Source Provisioning
	Sequential and Concurrent Application of Query Workload
	Logs Collection and Analysis

	The KOBE System
	Deployment Automation
	Benchmark and Experiment Specifications
	Experiment Orchestration

	Collecting and Analysing Evaluation Metrics
	Collecting the Evaluation Metrics
	Visualizing the Evaluation Metrics

	KOBE Extensibility
	Benchmarks and Experiments
	Dataset Servers and Federators

	Comparison to Related Systems
	Conclusions

	Linked Geospatial Data Benchmarks
	Geographica2
	A benchmarking framework
	Real world workload
	Synthetic workload
	Synthetic generator - StdSynthGen

	Geographica3 CL
	General
	A distributed geospatial benchmark
	Requirements of DistSynthGen
	Main features of DistSynthGen
	DistSynthGen Queries explained
	Usage of DistSynthGen
	Triples scaling
	Storage/size scaling
	Time/generation scaling

	GeoFedBench
	Introduction and Motivation
	The GSSBench Suite
	The GDOBench Suite
	Benchmark characteristics

	Strabo2 Experiments
	Query Execution Results
	Evaluating Improvements in Query Execution
	Caching of Thematic Tables
	Hybrid Translation with Persistent Spatial Index and Partitioning
	Caching Qualitative Spatial Relations Using JedAI-Spatial

	Datasets and Queries from the Use Cases of ExtremeEarth

	Semagrow Experiments
	The Semagrow query federation engine
	Evaluation using GSSBench suite of GeoFedBench
	Experimental setup
	Experimental results

	Evaluation using GDOBench suite of GeoFedBench
	Experimental setup
	Experimental results

	Summary

	Scale-to-Petabyte experiment
	Advances in querying and federating big linked geospatial data
	Experimental setup
	Experimental results
	Summary

	Conclusions
	Bibliography

