B Ref. Ares(2021)4228984 - 29/06/2021

EXTREME
FARTH

ExtremeEarth

D1.8

Hops data platform support for EO data -version Il

Responsible Partner: LC

Theofilos Kakantousis, Jim Dowling, Vladimir Vlassov, Sina Sheikholeslami, Tianze Wang
Desta Haileselassie Hagos

Status: Final
Scheduled Delivery Date: 30/06/2021

SN
(9
EXTREME
EARTH H2020-825258
Executive Summary

The ExtremeEarth project aims at advancing the state of the art in Big Data Analytics for
Earth Observation data with Copernicus data. New techniques in the areas of Remote
Sensing and Artificial Intelligence with an emphasis on Deep Learning will be developed and
used during the course of this project. These techniques will be demonstrated in two use
cases, namely, Food Security and Polar Ice. One of the main factors that differentiate this
project in comparison to other Earth Analytics ones, is the use of Hops data platform
(Hopsworks), a horizontally scalable full-stack Big Data and Artificial Intelligence (Al)
platform. Hopsworks provides first-class support for both Data Analytics at scale and Data
Science at scale. In particular, Hopsworks supports the development of Deep Learning
applications in notebooks and the operation of workflows to support those applications,
including data processing at scale, model training at scale, and model deployment. In this
deliverable, we describe and demonstrate the services and features of Hopsworks that
provide users with the means of building scalable Deep Learning pipelines for Earth
Observation (EO) Data, as well as support for discovery and search for EO metadata. Users of
the platform typically are data engineers working with data collection and transformation,
and data scientists working with training samples and model training. This deliverable serves
as a demonstrator and walkthrough of the stages of building a production level model that
includes Data Ingestion, Data Preparation, Feature Extraction, Model training, Model
Serving, and Monitoring. We provide a practical example that demonstrates the
aforementioned stages with real-world EO data and provides source code that implements
the functionality in the platform. Work contributed to this deliverable will be used by WP2
and WP3.

Updates in D1.8 compared to D1.4

This deliverable builds on D1.4 which is the first version of this deliverable. It delivers the
previous content with updates and additions across all sections. In addition, the
demonstrator has been updated and is available online [18]. Notable changes compared to
the previous version of this deliverable are the following:

1. Section 3.3 Python environment: New section that demonstrates the Python
environment support in Hopsworks.

2. Section 4 Metadata support for EO and Big Data: Updated section to include
implementation details of how Hopsworks has been extended with metadata
support for EO data. New sections 4.1 and 4.2 demonstrate how to use metadata to
perform free-text search and tagging.

3. Section 5 EO data pre-processing: Demonstrates new tools Hopsworks has been
extended with for EO data pre-processing.

4. Section 7.2 Feature validation: Updated section with new feature validation
framework.

Platform Software Architecture - Version Il, D1.6

(9)
EXTREME
FARTH H2020-825258
5. Section 12 Hopsworks TEPs Integration: Content was moved and expanded in
deliverable D1.6 Platform Software Architecture version Il.
6. Demonstrator code is now available at
https://github.com/ExtremeEarth-Project/eo-ml-examples

Platform Software Architecture - Version Il, D1.6 3

https://github.com/ExtremeEarth-Project/eo-ml-examples

s7\"
'\O,a

EXTREME

FARTH H2020-825258
Document Information
Contract Number H2020 - 825258 Acronym ExtremeEarth
Full title From Copernicus Big Data to Extreme Earth Analytics
Project URL http://earthanalytics.eu
EU Project officer Riku Leppénen
Deliverable Number p33g Name Hops data platform support for
EO data version Il
Task Number 714 Name EO Data Pipelines
Work package Number WP1
Date of delivery Contractual M30 Actual M30
Status draft [fina IX
Nature Prototype Report
Distribution Type Public X Restricted (] Consortium [
Responsible Partner LC
QA Partner KTH, UoA, NCSR-D
Contact Person Theofilos Kakantousis
Email theo@Ilogicalclocks Phone Fax
.com

Platform Software Architecture - Version Il, D1.6

Ta\

0.
EXTREME

FARTH H2020-825258

Project Information

This document is part of a research project funded by the IST Programme of the Commission

of the European Communities as project number H2020-825258. The beneficiaries in this
project are the following:

Partner Acronym Contact
UoA Prof. Manolis Koubarakis
National and Kapodistrian University of Athens
National and Kapodistrian University of P ¥
Athens Dept. of Informatics and Telecommunications

Panepistimiopolis, Ilissia, GR-15784

Department of Informatics and HELLENIC REFUBLIC

) e Athens, Greece
Telecommunications (Coordinator) National and Kapodistrian . .
University of Athens Email: koubarak@di.uoa.gr
EST. 1837
Tel: +30 210 7275213, Fax: +30 210 7275214

VISTA

VISTA Geowissenschaftliche s Heike Bach
Fernerkundung GmbH y . .
_.E? Email: bach@vista-geo.de

UiT
The Arctic University of Norway equRJ,[Torbjgrn Eltoft
= il: torbj @ui
Department of Physics and Technology ’? } '.é' Email: torbiorn.eltoft@uit.no

@) 26 ()
) Yb%

TRO

UNITN

University of Trento
Lorenzo Bruzzone

Department of Information Engineering

and Computer Science UNIVERSITY OF TRENTO - Italy

Department of Information Engineering
and Computer Science

Email: lorenzo.bruzzon nitn.i

KTH

Royal Institute of Technology m Viadimir Viassov
&= %,

ol -4 Email: vladv@kth.se
ZXKTHS

VETENSKAP
3% OCH KONST &%

oes®

Platform Software Architecture - Version I, D1.6

mailto:koubarak@di.uoa.gr
mailto:bach@vista-geo.de
mailto:torbjorn.eltoft@uit.no
mailto:lorenzo.bruzzone@unitn.it
mailto:vladv@kth.se

EXTREME
FARTH

H2020-825258

National Center for Scientific Research -
Demokritos

DEN\OKRITOS
DLR

Deutsches Zentrum fur Luft-und
Raumfahrt e. V.

DLR

PolarView

Polar View

Earth Observation for Polar Monitoring

METNO

Polar View Earth Observation Ltd.

METEOROLOGISK INSTITUTT Norwegian

Meteorological
~~ Institute

[OG]cAL

(LOCKS

UKRI-BAS

British
Antarctic Survey
NATURAL ENVIRONMENT RESEARCH COUNCI

United Kingdom Research and Innovation
— British Antarctic Survey

Vangelis Karkaletsis

Email: vangelis@iit.demokritos.gr

Corneliu Octavian Dumitru

Email: corneliu.dumitru@dir.de

David Arthurs
Email: david.arthurs@polarview.org

Nick Hughes
Email: nick.hughes@met.no

Jim Dowling

Email: jim@logicalclocks.com

Andrew Fleming

Email: ahf@bas.ac.uk

Platform Software Architecture - Version Il, D1.6

mailto:vangelis@iit.demokritos.gr
mailto:corneliu.dumitru@dlr.de
mailto:david.arthurs@polarview.org
mailto:nick.hughes@met.no
http://jim@logicalclocks.com
mailto:ahf@bas.ac.uk

7aY

(9
EXTREME

EARTH

Table of Contents

1. EO Data Deep Learning Pipelines Architecture
2. Parallel Data Processing with Apache Spark

3. Development Environment
3.1 Jupyter notebooks on Kubernetes
3.2 Jupyter notebooks as Jobs

3.3 Python environment

4. Metadata support for EO and Big Data
4.1 Search example

4.2 Tagging example

5. Data Ingestion
5.1. Demonstrator Dataset

5.2. Accessing EO Data from Hopsworks

6. EO data pre-processing
6.1 EO data pre-processing with Python

6.2 EO data pre-processing with Docker and Kubernetes

7. Feature Engineering and Data Validation
7.1 Feature Store
7.2 Feature Validation

8. Training
8.1 Experiments
8.2 Parallel Experiments
8.3 Distributed Training
8.4 Hyperparameter Tuning with Maggy
8.5 Ablation studies

9. Model Analysis
10. Model Serving & Monitoring
11. Orchestration

12. Hopsworks TEPs Integration

H2020-825258

12

18
18
19
20

22
24
25

28
28
31

33
33
34

38
38
43

48
48
52
55
56
61

64

66

73

75

Platform Software Architecture - Version I, D1.6

7aY
(9
EXTREME
EARTH H2020-825258

13. References 76

Platform Software Architecture - Version Il, D1.6 8

7aY
EXTREME
EARTH H2020-825258

1. EO Data Deep Learning Pipelines Architecture

A Data Science application, particularly in the domain of Big Data, typically consists of a set
of stages that form a data pipeline. This data pipeline is responsible for transforming data
and serving it as knowledge by using data engineering processes and by applying ML
algorithms and Deep Learning (DL) techniques. These stages typically are:

Data Ingestion

Data Preparation & Validation
Feature Extraction

Build & validate the model (training)
Model Serving/Monitoring

The first two steps, data ingestion, and preparation can also be described as Data Pipelines.
Figure 1 illustrates the Deep Learning pipeline stages along with the stakeholders of these
stages. Feature Extraction is facilitated by the Feature Store service, presented in section 7.

HORIZONTAL SCALABILITY AT EVERY STAGE IN THE PIPELINE

Machine Learning Experiments Data
Model

Data Feature Parallel
Pipeline Store Hyperparam Ablation o Serving
Optimisation Studies Tra|n|ng

Faster backfill >100X >100X Elastic Scale
Training Data Productivity Productivity to apps needs

E

Data
Scientist

&3

Data Team

Online Apps
Figure 1. Machine Learning Pipeline [1]

Once data goes through all the stages and the model of the ML pipeline is served, the stages

are executed once again in order to consider new data that has arrived in the meantime and

to further fine-tune the pipeline stages which will lead to more accurate models and results.

Therefore, a data science life cycle is formed, which continuously iterates the above ML

pipeline.

As a result, data scientists are faced with the highly complex task of developing DL
workflows that utilize each stage of the ML pipeline. The complexity of such pipelines can

Platform Software Architecture - Version Il, D1.6 9

7aY
EXTREME
EARTH H2020-825258

grow as the input data increases in volume, which in the case of EO data means that a
robust and flexible architecture needs to be in place to assist data engineers and scientists to
develop these pipelines. Figure 2 depicts the overall architecture and lifecycle of a DL
pipeline along with the technologies used to implement it and demonstrated in the rest of
this document.

STAGE 1 STAGE 3 STAGE 4
Data Engineer ML Engineer APP Developer
=3
STAGE 1 h 4 :
H FEATURE

v

Features FEATURE STORE

STAGE 2

Data Scientist Online APP

SRS I Streaming or KPI Dashboard
. . 1l ashboal
Data Scientist FEATURE : Serverless Alerts

v SELECTION : monitoring app

Training Data |
Models 9
Model Design

Model Candidates

STAGE 3

ML Engineer
v

- Model
m.. Architecture

: Kubernetes / Serverless

Models API

STAGE 4 Model Hyperparameters

APP Developer
v . .
" Trial
Intelligent APP

Figure 2. Hopsworks ML Lifecycle

The stages of data collection (ingestion), pre-processing, and management of a service to
store curated feature data and compute features can be considered to be a part of the Data
Engineering lifecycle. The Feature Store is the service used in this DL pipeline to manage
curated feature data. The second step of the pipeline, the actual ML training and model
development, starts by fetching feature data in appropriate file formats to be used as input
for training, with the file format depending on the ML framework that is used. This step can
be considered as the Data Science lifecycle, where new feature data is fetched and new
models are iteratively developed and pushed to production (serving).

One of the main goals of a DL pipeline is to continuously improve the output models, by
using some user-defined metrics. To detect when the DL pipeline should be triggered in
order to update a DL model served in production, there needs to be a mechanism in place
that logs all inference requests and monitors how the model is performing over time. Model
serving and monitoring in Hopsworks provide these capabilities to developers of pipelines
and are further demonstrated in section Model Serving & Monitoring.

Platform Software Architecture - Version Il, D1.6 10

SN
(o)
EXTREME
FARTH H2020-825258

Figure 3 depicts the Hopsworks services stack. HopsFS and RonDB (NDB/MySQL Cluster)
provide horizontally scalable data and metadata storage. Apache Hadoop YARN and
Kubernetes are the resource management frameworks on the upper layer. These provide
resources to the distributed processing framework in Hopsworks, Apache Spark, and to
Hopsworks itself to provide EO data pre-processing with arbitrary programming languages
functionality and also running Python jobs and notebooks. Auxiliary services are part of this
layer, providing logging and metrics monitoring. The next layer comprises Hopsworks itself,
the webapp with the REST API that provides client applications and users connectivity to the
entire Hopsworks cluster.

Stateless
Service

Kubernetes
Service

8 © Data Engineers, Data Scientists, Bl Analysts, Admins, Devices

v v

4

REST
API

Feature Store Superset

Model .
Serving Jupyter Hive Spark m Clickhouse

Model

Avio |
i Livy AirFlow Yarn Schema | :
; gIstry Regi :
Kibana Grafana Hopsworks m ePipe m
m M Zoo-

Figure 3. Hopsworks services stack

FileBeat

LogStash

Running a DL pipeline can be a repetitive task, as most (if not all) stages need to run when
new data is ingested into the system. Orchestrating the order of stage execution, monitoring
progress, and putting a retry mechanism in place in case of failures, is an important part of
making an EO data pipeline production ready. Hopsworks integrates Apache Airflow[2] as an
orchestration engine and section 11 describes how this integration has been implemented
and provided to users of the platform. The rest of this document demonstrates each stage of
the Deep Learning pipeline implemented in Hopsworks, with a dataset based on a real-world
dataset from the Polar use case domain.

Platform Software Architecture - Version Il, D1.6 11

(9)
EXTREME

FARTH H2020-825258
2. Parallel Data Processing with Apache Spark
Integration Guidelines section of deliverable D1.5 Hops data platform integration guide for
applications - version Il describes in detail how the Jobs and Notebooks services in
Hopsworks can be used for data processing and deep learning. This section describes how
the aforementioned services utilize Apache Spark in Hopsworks and how the latter is
integrated into Hopsworks to provide horizontally scalable data processing and distribution
of machine learning processes in a Hopsworks cluster.

Apache Spark (Spark) is a framework for large-scale distributed processing of data. Spark
provides data engineers and data scientists with the tools to process data at scale and offers
powerful APIs for developing data pipelines. Adding support for developing and running
Apache Spark applications at scale with Hopsworks is also a prerequisite for the
development of part of WP3, in particular, deliverables related to “Software for querying
and extreme analytics for big linked geospatial data”.

Spark can be deployed on top of various resource management services, such as Apache
YARN (YARN), Mesos, and Kubernetes. Hopsworks utilizes the flavor of YARN that is
developed within the Hops project as the resource management service for deploying
distributed applications on a cluster of servers. YARN in Hops supports scheduling
applications with resource constraints, which are CPU, main memory, and Graphics
Processing Unit (GPU). Therefore, Spark in Hopsworks is deployed on top of YARN, and users
developing DL pipelines can easily, from within the Hopsworks user interface (Ul), request
these three resources to be allocated to their job or notebook. That is particularly important
for allocating GPUs when the Spark program needs to have access to GPU compute power.

During the ExtremeEarth project Spark versions 2.x, in particular version 2.4.3, were used for
the majority of the duration of the project, which do not support scheduling with GPUs [11],
unlike recently released Spark 3.x versions that added such support. Therefore, Spark was
extended within the scope of the ExtremeEarth project to provide GPU-based resource
allocation and scheduling within the Hopsworks platform. In Hopsworks, a new parameter
“spark.executor.gpus” has been added to Spark to indicate the number of GPUs to be
requested for each Spark executor. It is then left up to the scheduler of YARN to allocate the
resources based on scheduler policies and current cluster utilization. Implementation details
are available online at the Logical Clocks GitHub repository [41]. Figures 4 and 5 provide a
high-level view of the architecture behind GPU and Deep Learning framework support
within PySpark.

Platform Software Architecture - Version I, D1.6

S\
(9)
EXTREME
FARTH

H2020-825258

Resource

Node

Manager

Manager

2

CONDA

CONDA #%

Node
Manager

Executor

Figure 4. Resource management and GPU allocation in Hopsworks

Platform Software Architecture - Version Il, D1.6

13

7aY
EXTREME
EARTH H2020-825258

Driver
conda_env

» Executor, » Executor

conda_env conda_env

1 i i —

TensorBoard Checkpoints Training Data Models Logs

Figure 5. Spark Driver and Executors with GPUs and Deep Learning Frameworks

Hopsworks has been extended with an API that allows clients to easily submit Spark
applications on the cluster. Hopsworks sets up default Spark configuration parameters and in
addition, it provides a flexible way for users to provide additional ones with their Spark
application via the Ul or the RESTful and client APIs for their application.

Endpoints for submitting Spark applications as jobs in Hopsworks can be found under the
jobs resource, which is a sub-resource of the top-level projects resource. To submit a new
job, a client would need to submit an HTTP request to the Hopsworks
/project/{projectid}/jobs/{name}/executions endpoint. An exhaustive list of all endpoints
related to the Jobs resource is available at SwaggerHub [6].

Figure 6 demonstrates how users can submit a Spark job via Ul of the Hopsworks Jobs
service with dynamic executors. All configuration parameters are provided through the Ul
and sent via HTTP to a RESTful jobs service endpoint in Hopsworks. The executable JAR file
“spark-examples.jar” has been uploaded into the Testlob dataset and program runtime input
arguments are set either with the “Default arguments” textbox or with the job arguments

Platform Software Architecture - Version Il, D1.6 14

(9)
EXTREME

EARTH H2020-825258
popup textbox when the user runs the job. All metadata of jobs, such as Spark configuration,
duration, creator etc., are stored in the metadata layer of Hopsworks. This metadata layer is
backed by the in-memory horizontally scalable distributed database RonDB, an evolution of
MySQL Cluster (NDB). This database is used to store metadata of critical Hopswork services,
providing strongly consistent metadata across services in Hopsworks.

K te
&% HoPSWORKS K'tep

demo_spark_... 3¢ Job name - SparkPi

03 Job type - SPARK
App file - spark-examples.jar

Job details

O Experiment t O Panallel Experiments O Distributed Training @ spark (tatic) O spark (Dynamic)

Driver memory (MB):

Executor memory (MB):

Advanced configuration v

+BAcchive No additional archives

Figure 6. Submitting Spark Applications from the Jobs services

Furthermore, Hopsworks collects real-time logs produced by the Spark driver and executors,
by utilizing the ELK stack which comprises Elasticsearch, Logstash, Kibana, and Beats [35].
Filebeat, part of the Beats suite of data shippers, is installed on all cluster nodes that may
run either a driver on an executor and it monitors the directory where logs are output. Log
content is then transmitted over the network to Logstash which applies some business logic
by using Grok filters. The purpose of this business logic is to enrich the logs with metadata in
regards to which project particular logs belong to and then logs are sent to Elasticsearch for
indexing. Elasticsearch stores all logs of a project in one index. Kibana is provided via the
Jobs Ul in Hopsworks as a tool to create rich visualizations of logs. Figure 7 shows the logs of
a Spark job in Hopsworks. All logging services are adapted to the project-based multi-tenant
model of Hopsworks, which means users can securely access logs produced by jobs and
notebooks within their projects. As a result, it is not possible to access logs of other projects,
preventing data leaks. To achieve that, logging services utilize the project-user TLS
certificates mechanism that is also used consistently across Hopsworks to ensure
authentication, authorization and encrypted communication [53].

Platform Software Architecture - Version Il, D1.6

SN
(o)
EXTREME
FARTH H2020-825258

£ rorsuouss Ktep
=

K oiscover © @ demo_spark

nnnnnn

Figure 7. Real-time Apache Spark logs in Hopsworks with the Jobs service

In addition, metrics that are reported from Spark are collected with Prometheus [42], an
open-source system and service monitoring system. It collects metrics from configured
targets at given intervals, evaluates rule expressions, displays the results, and can trigger
alerts when specific conditions are observed. Metrics in Hopsworks are visualized using
Grafana, an open-source analytics, and monitoring framework [43]. The latter can be
accessed via the Jobs Ul in Hopsworks. The previous version of this deliverable, D1.4, used
InfluxDB instead of Prometheus for storing job and service metrics. The move to Prometheus
was prompted by the wider adoption of the Prometheus system and its more optimal
resource utilization as it was observed that InfluxDB was using too many compute resources
on the Hopsworks cluster. Further information regarding how logging and monitoring can be
accessed by users is provided in deliverable 1.1 under section Jobs. Figure 8 shows metrics
of Spark job run in Hopsworks, with 10 executors.

Again, similarly to the real-time logging architecture described above, access to metrics is
based on project-user authorization, meaning users can only access metrics of projects they
are members of. This metrics monitoring architecture is also used in Hopsworks to collect
logs of services at an administrative level. A Hopsworks user with the role HOPS_ADMIN, via
the “Admin UI”, can monitor utilization in real-time of critical services such as the distributed
file system HopsFS and the metadata layer (database).

Platform Software Architecture - Version Il, D1.6

SN
(o)
EXTREME
FARTH H2020-825258

22.292 min

100000

Figure 8. Real-time Job (Spark) metrics monitoring with Prometheus and Grafana in
Hopsworks

Platform Software Architecture - Version Il, D1.6

O.
EXTREME
FARTH H2020-825258
3. Development Environment

Jupyter notebooks have become the lingua franca for data engineers and data scientists that
develop both data and deep learning pipelines [44]. They provide an interactive way of
writing code, getting and sharing results and code with other developers. Hopsworks
supports writing Python and Spark/PySpark programs with Jupyter and JupyterLab via the
Jupyter service which is accessible from the navigation bar from within a project in

Hopsworks. Users are presented with a set of configuration parameters with some of them
already set with default values.

To have a consistent way of working with Jupyter notebooks and jobs in Hopsworks, the
Jupyter configuration is common with the Jobs one. That means users can set a Spark
configuration to use when using the Jupyter server and that configuration is stored in the
Hopsworks database and made available in the Jobs service as well. This reduces user
friction, allowing users to reuse configurations across jobs and notebooks allowing for a
seamless development experience.

Figure 9 shows the default Jupyter dashboard page in Hopsworks for working with
Spark/PySpark notebooks.

eeeeeeeeeeeeeeee

Figure 9. Jupyter dashboard landing page

3.1 Jupyter notebooks on Kubernetes
Hopsworks has been extended to run Jupyter notebooks in Docker containers managed by a
Kubernetes cluster. The latter is installed and configured automatically with Chef [28] by
using Karamel [36], the installation framework of Hopsworks, during a Hopsworks cluster
installation. When users create a new project, a new namespace in Kubernetes will be

Platform Software Architecture - Version Il, D1.6

(9)
EXTREME
FARTH H2020-825258
created for this project. For each user starting the Jupyter server in Hopsworks, the latter
creates a Kubernetes deployment that runs the Jupyter server and a sidecar that collects the
logs. These logs are sent to the ELK stack described in section 2 and displayed via Kibana to
the users within the Hopsworks Ul.

A Docker image is pre-built and provided by Hopsworks that is responsible for running the
Jupyter server. The Docker file of this image is based on the official ubuntu one found on
Dockerhub and is responsible for the following:

1. Set the system user to run the container.

2. Install all necessary dependencies such as Java OpenJDKS8.

3. Expose the port on which the Jupyter server is listening at.

4. Set the base working directories for infrastructure dependencies such as the project’s
Python environments based on the Anaconda distribution [45].

5. Start the Jupyter server.

In addition, this Docker image already contains a plethora of frameworks and libraries that
data scientists working with EO data typically use today. Such frameworks are TensorFlow
version 2.4 as per the time of writing, PyTorch version 1.7, cudatoolkit for working with
GPUs, and many more. Users can install libraries on top of this image and the architecture of
this mechanism is described in section 3.3 Python environment management.

Therefore, Hopsworks connects to Kubernetes to submit deployments and Kubernetes
manages the lifecycle of the Jupyter deployment. Hopsworks exposes lifecycle operations to
Hopsworks users and manages user authentication via its HTTP RESTful APl with operations
such as start/stop the Jupyter server.

3.2 Jupyter notebooks as Jobs

Jupyter notebooks in Hopsworks can also run as regular PySpark or Python jobs, as
Hopsworks converts automatically the notebook into a PySpark or Python program which is
then submitted via the regular Hopsworks Jobs service. Figure 10 depicts the series of events
that occur for launching notebooks and jobs in Hopsworks, which is what Airflow also
leverages to provide DL pipeline orchestration. In short, Hopsworks reads the input
notebook file and converts it to an executable Python script using nbconvert [54]. The
PySpark or Python job then reads and executes it as it would with any other regular PySpark
or Python job. Hopsworks operators in Airflow can then be used to create a workflow, in the
form of a Directed Acyclic Graph (DAG), that makes use of the aforementioned jobs.
Furthermore, whenever the notebook is updated by the user, the changes are reflected on a
new job execution as the notebook is converted to a Python file upon every execution.

Platform Software Architecture - Version Il, D1.6

SN
\(:b

EXTREME

EARTH H2020-825258
&) o
jupyter
‘ Interactive e’
LN
’0‘ PySpark Kernel t materialize certs, ENV variables Livy Server
&5
.ipynb (HDFS contents)
HopsFS HopsYARN
.ipynb -> .py
(nbconvert) [logs, results]
Jobs Service
Schauie using Run .ipynb /.py/ jar materialize certs, ENV variables
REST APl or UI
Fa Airflow

Figure 10. Jobs and notebooks execution framework

3.3 Python environment

Hopsworks has been extended with first-class support for self-service management of
Python dependencies within Hopsworks projects. A Hopsworks project is created along with
its own Python Anaconda environment [45]. This enables Python dependency isolation
between projects which is crucial in having a stable development and job execution
environment. The Hopsworks REST API exposes the same functionality to non-Ul clients via
the PythonResource resource, with source code available at [5] and REST APl documentation
at [6] under “/project/{projectld}/python/environments'. This Python environment is
shipped with the Docker image described in section 3.1. Users in Hopsworks manage this
environment through the Ul in a self-service manner. Users therefore can:

Search for Python libraries through pip or conda.
Install libraries through pip, conda, git, wheel files.
Uninstall libraries.

List libraries.

Export the Python environment in a yml file which can then be imported into
another project or used as a backup mechanism.

Python libraries might conflict with each other, resulting in potential incompatibilities when
running jobs and notebooks. Hopsworks has been extended with a mechanism that detects
such conflicts and displays them to the user. Figure 11 shows the Python environment of a
project and an example of such a conflict warning. Users can then take appropriate action by
installing the library versions of their choice.

Platform Software Architecture - Version Il, D1.6

7aY
(9
EXTREME
EARTH H2020-825258

Figure 11. Jobs and notebooks execution framework

Since the Python Anaconda environment is included in the Docker image of the project,
subsequent operations such as library install/uninstall are managed by Hopsworks by adding
additional layers on top of the project’s Docker image. Hopsworks is responsible for the
Docker image lifecycle: building the image, pushing it to the registry, and removing it if the
Python environment is reset or the project is deleted.

Some libraries that have been utilized by the ExtremeEarth use cases and WP4 “The Food
Security Use Case” and WP5 “The Polar Use Case” are TensorFlow for deep learning and
GDAL for data pre-processing for which more details are available in section 6 EO data
pre-processing.

Platform Software Architecture - Version Il, D1.6 21

7aY
EXTREME
EARTH H2020-825258

4. Metadata support for EO and Big Data
Within the Hopsworks platform, data storage is managed by the distributed file system
HopsFS. Hopsworks has been extended with metadata management for datasets and files to
support both searching for data and tagging data with user-provided metadata. By providing
support for metadata, it is ensured that EO data can be properly annotated, cataloged, and
made accessible to appropriate users.

Metadata in Hopsworks is used primarily to discover and retrieve relevant files, directories,
datasets, and projects through the use of full-text search. Metadata is associated with a
particular file and is stored in the same database as the filesystem metadata of HopsFS.
Foreign keys in the database link the extended metadata with the target file, ensuring its
integrity and consistency. Extended metadata is exported to Elasticsearch, from where it can
be queried and the associated file/directory/dataset/project can be discovered and
accessed.

Hopsworks has been extended with metadata tagging capabilities for EO data. Tags are
additional metadata, extended metadata in the Hopsworks terminology, attached to
artifacts in Hopsworks, and thus they can be used not only for an enhanced full-text search
but also to provide users with a more dynamic metadata content that can be used for both
storages as well as enhancing artifact discoverability [61]. A tag is a {key: value} association,
providing additional information about the data, such as for example geographic origin. This
is useful in an organization as it adds more context to data making it easier to share and
discover data and artifacts.

A schema needs to be defined for the tags when they are attached to datasets. Schemas
follow https://json-schema.org as reference. The schemas define legal jsons and these can
be primitives, objects, or arrays. The schemas themselves are also defined as jsons. Allowed
primitive types are:

string
boolean
integer

number (float)

Complex schemas can be defined as well, for example

{

"type" "object",

"properties"

{
"location" : { "type" "string" },
"dimensions" { "type" "string" },
"coordinates" {

"type" "array",

Platform Software Architecture - Version Il, D1.6

SN
\(:b

EXTREME

EARTH H2020-825258
"items" : { "type" : "string" }
}
Yy
"required" : ["location", "dimensions"],
"additionalProperties": false
}

and a value for this tag is

{

"location" : "North Pole",
"dimensions" : "12345x6789",
"coordinates" : ['90.0000°N, 135.0000° W"]

}

In the underlying infrastructure built in Hopsworks, metadata changes are logged as a
consistent change stream to the filesystem. We further process this change stream using
ePipe, a databus that both creates a consistent change stream for a distributed, hierarchical
file system (HopsFS) and eventually delivers the correctly ordered stream with low latency to
downstream clients [33]. One of the downstream clients is Elasticsearch. This allows us to
provide full-text search capabilities with eventual consistency for all the added metadata.

As Figure 12 depicts, changes to the filesystem, including the extended metadata are logged
into NDB and processed by ePipe. The ePipe service subscribes to these changes and
replicates these in an eventual consistent manner to configurable endpoints. EPipe also
allows for data enrichment of the change events with additional information from the
database. By default, Hopsworks comes with two configured endpoints: Elasticsearch and
Apache Hive [14], a scalable data warehouse built on top of Apache Hadoop.

Platform Software Architecture - Version Il, D1.6

(9)
9

EXTREME
EARTH H2020-825258

HOpSF S 5. Update documents

Elasticsearch

4. Data
enrichment

1. Sync / 5. Clean Hive
ePipe

2. Log fs changes

Hive
1. Subscribe for changes (

5. Publish events A
Or Take action PP,

3. Stream changes

5. Publish events A
Or Take action PP,

Figure 12. ePipe architecture

4.1 Search example
The demonstrator input data is stored in a dataset within Hopsworks named eodata. When
the dataset was created, the searchable option was set. That means the dataset metadata
using the mechanism described above replicated its metadata to the search engine
mechanism in Hopsworks. Figures 13 and 14 below show the search results for the term

eodata across all projects in Hopsworks.

eodata Q (] L-d admin@hopsworks.ai v

Q eodata Everything

Q eodata Projects
A new Hopsworks is available in be
Q eodata Datasets
Q eodata Feature store
e profects o o
¥ Tours O] Sortby ~ Q
‘:’ Tour tips: OFF “ ExtremeEarth
Click on a tour to get started! o demo_fs_meb10000 ®
mo_Is_|
Deep Learning (O]
Spark (C] _
Kafka (O]
Feature Store (O]
£ Cluster Datasets
& Need support?
& Documentation (2]

Figure 13. Searching for term eodata

Platform Software Architecture - Version Il, D1.6

EXTREME
FARTH

H2020-825258

FEATURE GROUPS @)

Search result for: eodata

somrer eodata %
Sort by v

Project: ExtremeE Last modified: May

6,2021 10:03:05 AM
FILTER BY DATE

TRAINING DATASETS @)

FEATURES @

PROJECT @)

Owner: Admin Admin

DATASET @)

Dataset

Showing 1 of Lresults eodata
Project: ExtremeEarth
Owner: Admin Admin

Last modified: May 6, 2021 10:03:05 AM

Figure 14. Search results when searching for term eodata

4.2 Tagging example

The following figures demonstrate how to create tags from the Hopsworks Administration

Ul, how to view the details of a specific tag in the Administration, and finally how feature
search results are presented to users.

n + back to ExtremeEarth

Cluster settings

Tag schemas

«all schemas

Create new tag schemas

Name Description

location_polar Location of th

Properties

Add a property

e sateliite images

¢ @ @ Admin Admin

Name Type Required Description

1 | name String

2 | projects Array of String Projects using this dataset
3 | location String Geographical location

© Note that schematised tags are immutable

Figure 15. Admin Ul to create a tag name location_polar in the new Hopsworks Ul

Platform Software Architecture - Version Il, D1.6

25

EXTREME
FARTH

H2020-825258

n + back to ExtremeEarth

Cluster settings

Tag schemas

Alltags schemas

1 tag schema

location 3fields Location of the icebergs contained in the dataset

e .mm g

x

location

projects.

number of images

© Tag schemas are immutable.

Figure 16. Viewing a tag named “location” in the Admin Ul

Advanced search
Feature Groups Training Datasets _ Features

Free text search 6 features groups match

band

® iceberg

e iceberg

® iceberg

e iceberg

®:

® iceberg

e iceberg

e 5 days

e 5 days a0

— 5 days ago

e Sty

ago

Figure 17. Search results when searching for feature “band”

Array of String

Integer

Q D

@ D

@ D

@ 9D

@ 9D

@ Il D

Platform Software Architecture - Version Il, D1.6

26

EXTREME
FARTH H2020-825258

® iceberg .

Figure 18. Search results when searching for feature “band”

Platform Software Architecture - Version Il, D1.6 27

7aY
EXTREME
EARTH H2020-825258

5. Data Ingestion

The first step in building a scalable Deep Learning pipeline is to locate the sources where the
input data reside. Then, processes need to be established that ingest, that is copy or move,
data from these sources into the platform where the DL pipeline runs. These sources can be
quite diverse in the format they use to store data and the protocols they implement to
deliver data over to other systems. Such sources include raw data which can come from
devices connected to the Internet of Things (loT), images from satellites, structured data
from data warehouses, financial transactions from real-time systems, social media, etc.
Figure 19 builds on figure 1 to illustrate wherein the pipeline these external systems reside.

Raw —

Machine Learning Experiments
Data Feature : Data Parallel Model
Pipelines Store Hyperparam Ablation Training Serving
Optimization Studies

Faster Backfill

>100X >100X :
p Elastic scale to
Data Training Data Productivity Productivity App needs
Lake e & © e

& | Y X [

Data Team Data Scientist Online Apps

Figure 19. Data Ingestion sources for a DL pipeline

In the context of ExtremeEarth, we show the different ways in which Hopsworks has been
extended to make satellite imagery data easily ingested in the platform for further
processing.

5.1. Demonstrator Dataset

The scope of this deliverable is to demonstrate the extended Hopsworks platform and how it
can be utilized for building deep learning pipelines with EO data. WP4 “The Food Security
Use Case” and WP5 “The Polar Use Case" make use of Hopsworks with big training datasets
developed for this project. As for this deliverable’s demonstrator, it was decided to use a
public and free dataset related to EO data and the Polar use case in particular. The input
dataset for the DL pipeline of this demonstrator is the “Statoil/C-CORE Iceberg Classifier
Challenge - Ship or iceberg, can you decide from space?” [37]. It is hosted by Kaggle which is
an online community of data scientists and machine learners and is distributed for free.

The schema for the Statoil dataset is presented in Figure 20. The data is in json format and
contains 1604 images. For each image in the dataset, we have the following information:

e id-theid of the image.
e band_1, band_2 - the flattened image data. Each band has 75x75

Platform Software Architecture - Version Il, D1.6 28

O.
EXTREME
FARTH H2020-825258
e pixel values in the list, so the list has 5625 elements. Band 1 and Band 2 are signals

characterized by radar backscatter produced from the polarizations to HH
(transmit/receive horizontally) and HV (transmitted horizontally and received
vertically).
inc_angle - the incidence angle of which the image was taken.
is_iceberg - set to 1 if it is an iceberg, and 0 if it is a ship.

Platform Software Architecture - Version Il, D1.6

7aY
(9)

EXTREME

FARTH H2020-825258
B {
2~ "band_1": {
5 "feature": "fixed_len",
4 "type": "float",
5 "shape": [
6 5625
7]
8 Iy
9~ "band_2": {
10 "feature": "fixed_len",
11 "type": "float",
12 ~ "shape": [
13 5625
14 1
15 ¥,
16~ "band_avg": {
17 "feature": "fixed_len",
18 "type": "float",
19 = "shape": [
20 5625
21 1
i 1,
s "id": {
24 "feature": "var_len",
25 "type": "string"
26 1,
27~ "inc_angle": {
28 "feature": "var_len",
29 "type": "string"
30 1,
31- "is_iceberg": {
32 "feature": "fixed_len",
33 "type": "int"
34 }
S 1

Figure 20. Schema of the Statoil demonstrator dataset

Platform Software Architecture - Version Il, D1.6 30

(9)
9

EXTREME
EARTH H2020-825258
5.2. Accessing EO Data from Hopsworks

In the context of ExtremeEarth, Hopsworks is deployed on a DIAS (CREODIAS) where EO data
required for this project resides. In Creodias, EO data is made available via an object store
where it can be accessed via the S3 protocol implemented by OpenStack Swift [4], or it can
be accessed via standardized web services such as WMS/WMTS/WCS/WFS [3]. Regarding
the latter, using a web client to access data is a well-known practice in the industry, and
existing solutions can be used directly in applications developed and deployed on
Hopsworks and it is beyond the scope of this deliverable to describe an example application
for such a scenario.

Hopsworks has been extended to allow arbitrary Python libraries to be installed by a
self-service User Interface (Ul). As a result, Hopsworks users can easily install and use from
within Jupyter notebooks and PySpark jobs the boto3 library [7], to access EO data from
Python programs via the S3 protocol.

Figure 21 below demonstrates how to list the contents of an object store S3 bucket on
CREODIAS containing Sentinel-2 data. The boto3 API also provides methods for downloading
data. As a result, users developing DL pipelines in Hopsworks can easily list and download EO
data for further processing.

In [1]: import boto3
import the boto3 library from the project's Python environment

Starting Spark application

ID YARN Application ID Kind State Spark Ul Driverlog Current session?

0 application_1552746274750_0001 pyspark idle Link Link v

SparkSession available as 'spark'.

In [3]: | # Credentials for accessing the object store.
Since the Hops data platform is installed on the same infrastractue as the object store (DIAS),
directly accessing the EO data is available for free.

access_key='anystring'
secret_key='anystring'
host="'http://data.cloudferro.com’

s3=boto3.resource('s3',aws_access_key id=access key,
aws_secret_access_key=secret_key, endpoint_url=host,)

bucket=s3.Bucket('DIAS")

The EO data bucket to explore.

Prints the name and path to the data stored under a particular Sentinel-2 directory

for obj in bucket.objects.filter(Prefix="'Sentinel-2/MSI/L1C/2016/62/03/S2A OPER PRD_MSIL1C PDMC_20160204T043037 R08
print('{0}:{1}'.format(bucket.name, obj.key))

DIAS:Sentinel-2/MSI/L1C/2016/02/03/S2A_OPER PRD_MSIL1C_PDMC_20160204T043037_R085 V20160203T203520 20160203T7203520
.SAFE/
DIAS:Sentinel-2/MSI/L1C/2016/02/03/S2A_OPER_PRD_MSIL1C_PDMC_20160204T043037_R085_V20160203T203520_20160203T203520
.SAFE/DATASTRIP/
DIAS:Sentinel-2/MSI/L1C/2016/02/03/S2A_OPER PRD_MSIL1C_PDMC_20160204T043037_R085 V20160203T203520 20160203T7203520
.SAFE/DATASTRIP/S2A OPER MSI_L1C DS_SGS_ 201602037220909 S201602037203520_N02.01/
DIAS:Sentinel-2/MSI/L1C/2016/02/03/S2A_OPER PRD_MSIL1C PDMC_20160204T043037 R085 V20160203T203520 20160203T203520
.SAFE/DATASTRIP/S2A_OPER MSI_L1C DS SGS_ 20160203T220909 S20160203T203520 N02.01/S2A OPER MTD L1C DS SGS_ 2016020
3T220909_5201602037203520. xml
DIAS:Sentinel-2/MSI/L1C/2016/02/03/S2A OPER PRD_MSIL1C PDMC_20160204T043037 R085 V20160203T203520 20160203T203520
.SAFE/GRANULE/
DIAS:Sentinel-2/MSI/L1C/2016/02/03/S2A_OPER_PRD_MSIL1C_PDMC_20160204T043037_R085_V20160203T203520_20160203T203520
.SAFE/GRANULE/S2A_OPER MSI L1C TL SGS_ 201602037220909 A003228 T54CWR N©2.01/
DIAS:Sentinel-2/MSI/L1C/2016/02/03/S2A_OPER PRD_MSIL1C PDMC_20160204T043037 R085 V20160203T203520 20160203T203520
.SAFE/GRANULE/S2A_OPER _MSI_L1C_TL_SGS_ 201602037220909 A003228 T54CWR_NO2.01/AUX_DATA/
DIAS:Sentinel- 2/MSI/L1C/2016/02/03/52A OPER_PRD MSIL1C PDMC 20160204T043037 _R0O85_V20160203T203520_20160203T203520
.SAFE/GRANULE/S2A OPER MSI_L1C_TL SGS_ 20160203T220909 A003228 T54CWR_NO2.01/AUX_DATA/S2A OPER_AUX_ECMWFT_SGS_ 20
1602037220909 V20166203T180000_20160204T060000
DIAS: Sentlnel 2/MSI/L1C/2016/02/03/S2A_OPER_PRD_MSIL1C_PDMC 20160204T043037 ROSS V20160203T203520 20160203T203520

~AarE AnAn IeAA ARER MAT LA~ TL ~Ae AAa~AAASTAAAAAR AAAAAA 4

Figure 21. Accessing Sentinel-2 EO data with boto3 library and Jupyter

Platform Software Architecture - Version Il, D1.6

(9)
9

EXTREME
EARTH H2020-825258

notebooks

Another way to directly access data via the S3 protocol is to use the Apache Spark connector
to S3 [8]. Security configuration parameters such as Access Key and Secret Key can be set in
the Hopsworks Ul before launching a Jupyter notebook or a PySpark job.

In [4]: # Read image data with PySpark into a DataFrame via the s3fs protocol from the object store
df = spark.read.format("image").option("dropInvalid", "true").load("file:///eodata/Landsat-5/TM/L1T/2011/11/11/LS05

In [8]: | #count the number of images read
df.count()

1

In [9]: | #print the schema of tha dataframe
df.printSchema()

root
|-- image: struct (nullable = true)
| |-- origin: string (nullable = true)
| |-- height: integer (nullable = true)
| |-- width: integer (nullable = true)
| | -- nChannels: integer (nullable = true)
| |-- mode: integer (nullable = true)
| |-- data: binary (nullable = true)

In [10]: | #show information about the read image

df.select("image.origin", "image.width", "image.height").show(truncate=False)

| L R R SR RS AR S A Ve TSR I S e S S R AR N R P R S R R R W S R
-- s SRR
|origin
|width|height|
T T e e . B e i A B A T
-- R s ST

|file:///eodata/Landsat-5/TM/L1T/2011/11/11/LS05_RKSE_TM__GTC_1P_20111111T093819_20111111T093847_147313 0191 0025_
1E1E/LSO5 RKSE_TM GTC_1P 20111111T093819 20111111T093847_ 147313 0191 0025 1E1E.BP.PNG|1448 |1448 |

Figure 22. Accessing local EO data from a PySpark program

EO data can also easily be accessed directly via the local filesystem. That is achieved by
utilizing the s3fs protocol to mount the S3 compatible object store containing the EO data to
the local filesystem on the operating systems Hopsworks is installed on. That makes it a lot
easier for end-users to write applications that read for example Sentinel images and then
proceed to perform some processing on them. The disadvantage of this approach is that
accessing data through s3fs does not perform as fast as directly accessing the data via S3.
However, it greatly depends on each use case whether this performance limitation affects
the end users’ applications. In the domain of this report, most applications are expected to
be batch in nature, and directly accessing EO data from the object store is expected to be
done only at the beginning of the DL pipeline. Then, EO data is preprocessed and new data is
generated which is to be used in later stages of the DL pipeline. Figure 22 demonstrates how
users can read a Sentinel-2 image stored in an S3 bucket directly into a PySpark application,
in this case, a PySpark dataframe.

Users can also have EO data stored directly in HopsFS, the distributed file system Hopsworks
is built on. A reason to do so might include wanting to share data, particularly data that has

Platform Software Architecture - Version Il, D1.6

7aY
(9
EXTREME
EARTH H2020-825258

been generated by applications that run on Hopsworks, across projects. D1.1 provides an
in-depth guide of how data can be shared among projects. Another reason might be that EO

data needed for a particular pipeline is available online or on the DIAS. Therefore such data
needs to be uploaded onto Hopsworks. The latter provides a REST APl endpoint under “POST
/project/{projectld}/dataset/upload/{path}’ [6] to upload any file types and have them
available from within a Hopsworks project. Figure 23 shows how to upload a file into a
project named ExtremeEarthTEP and into a dataset named EOData. Source code is available
at [9].

Upload

Upload all [Totalsize:1am8 |

Name

1 datacsv

Drag And Drop your fle here

Figure 23. Uploading a file into an EOData dataset in the ExtremeEarthTEP project

In the demo DL pipeline, the input EO dataset is stored in a Hopsworks dataset “Statoil” of a
project “ExtremeEarth”.

6. EO data pre-processing

6.1 EO data pre-processing with Python
Oftentimes satellite data needs to be processed before being provided as input to machine
learning algorithms. By utilizing the Python support in Hopsworks as described in Section 3
Development Environment, data scientists in ExtremeEarth can use programs such as GDAL
to process EO data. GDAL is a translator library for raster and vector geospatial data formats
[59] and it comes with a Python package and extensions are a number of tools for
programming and manipulating the GDAL Geospatial Data Abstraction Library [60].

In the example below, some EO data in the form of a .TIF file is available in a Hopsworks
dataset. The data scientist can then install gdal from the project’s Python environment and
use it directly either from a Jupyter notebook or a Hopsworks Job. Figure 24 demonstrates
the first option, where a Jupyter notebook is used to read the .TIF file from a dataset, open it
using GDAL, read it as an array, and print a patch of the image.

Platform Software Architecture - Version Il, D1.6 33

Ta\
(9)

EXTREME

° File Edit View Run Kemel Tabs Settings Help
- + 1 c [Launcher X gdal_example.ipynb X
B8 / gdal_example / B+ X OO0 » m C » Code v ©®
Name - Last Modified
D gdal_example.ipynb 3 days ago [1]: dimport gdal
from hops import hdfs
a hdfs.copy_to_local('hdfs:///Projects/gdal/MonthlyComposite/33TYN/REFBOA_S2B 33TYN_20180206_3.TIF')
& ds = gdal.Open(r'REFBOA_S2B_33TYN_20180206_3.TIF')
patch = ds.ReadAsArray(xoff=0, yoff=0, xsize=25, ysize=25)
% print(patch)
Started copying hdfs:///Projects/gdal/MonthlyComposite/33TYN/REFBOA S2B 33TYN 20180206 3.TIF to loc
Finished copying
[[[600...000]
[6O006 ... 000]
[0600 00 0]
[0600...000]
[6O606 ... 000]
[0 00 00 0]]
[[6060. 00 0]
[06006. 00 0]
[06006. 00 0]
[000...000]
[06006. 00 0]
[06006. 00 0]]
[[6060. 00 0]
[0600. 00 0]
[0600. 00 0]
[000...000]
[0600. 00 0]
[0600. 00 0]]
[[6060. 00 0]
[0600. 00 0]
[06006. 00 0]
[000...000]
[0600. 00 0]
[06006. 00 0]]
[[6060. 00 0]
[0600. 00 0]
[06006. 00 0]
[006...000]
[06006. 00 0]
[06006. 00 0]]
[[6060. 00 0]
[06006. 00 0]
[06006. 00 0]
[006...000]
[06006. 00 0]
[06006. 00 0]]]

Figure 24. Jupyter notebook processing monthly composists with GDAL in Python

6.2 EO data pre-processing with Docker and Kubernetes
Hopsworks has been extended in ExtremeEarth to provide support for working with
arbitrary programming languages and frameworks when processing EO data by enabling
users to run arbitrary Docker containers on Kubernetes via the Hopsworks Jobs service. The
motivation behind this functionality is that users might need to use tools and frameworks
that are not necessarily available in the Python anaconda environment of the project, such
as Java or C++ tools related to Remote Sensing and EO data.

As of the time of writing, Hopsworks has integrated Docker version 19.03.8 and Kubernetes
version 1.18.8. When users submit a Docker job in Hopsworks, the latter securely connects
to the Kubernetes cluster and submits a Kubernetes job that contains metadata and security
material (TLS certificates) unique for this job. Hopsworks is then able to monitor the job and
collect logs back to Hopsworks datasets. The entire Docker and Kubernetes infrastructure
stack is transparent to users, as they only need to interact with the Hopsworks Ul and the

Platform Software Architecture - Version Il, D1.6

7aY
(9
EXTREME
EARTH H2020-825258

client APls. Figure 25 displays the software stack integrated into Hopsworks that enables
users to run jobs and notebooks, including the Docker job type used for the EO data
pre-processing described in this section.

Stateless
Service

Stateless Service
w/ Backup

Hopsworks Jobs & Notebooks

RESTful API services

Python Docker Spark/PySpark Flink

Kubernetes YARN

Figure 25. Hopsworks Jobs and notebooks services infrastructure

Users can specify the following properties for a Docker job:

® Docker image: The location of the Docker image. Currently only publicly accessible

docker registries are supported.

Docker command: The command to run the Docker container with.

Docker command arguments: Comma-separated list of input arguments of the
Docker command.

e QOutput path: The location in Hopsworks datasets where the output of the Job will be
persisted, if the programs running inside the container redirect their output to the
same container-local path. For example, if the output path is set to
/Projects/myproject/Resources and the container runs the command echo “hello” >>
/Projects/myproject/Resources/hello.txt, then the Hopsworks job upon job

Platform Software Architecture - Version Il, D1.6 35

O.
EXTREME

FARTH H2020-825258
completion will copy the entire content of the /Projects/myproject/Resources from
the docker container to the corresponding path with the same name under Datasets.

® Environment variables: Comma-separated list of environment variables to be set for

the Docker container.
Volumes: Comma-separated list of volumes to be mounted with the Docker job.
User id / Group Id: Provide the uid and gid to run the Docker container with. For
further details, look into the Admin options below.

Certain options are available to Hopsworks users with the role HOPS_ADMIN only, as these
are applied cluster-wide:

e docker job_mounts_list: Comma-separated list of host paths jobs are allowed to
mount. Default is empty.

e docker_job_mounts_allowed: Whether mounting volumes are allowed. Allowed
values: true/false. Default is false.

e docker_job_uid_strict: Enable or disable strict mode for uig/gid of docker jobs. In
strict mode, users cannot set the uid/gid of the job. The default is true. If false and
users do not set uid and gid, the container will run with the uid/gid set in the
Dockerfile.

An example of a platform with a variety of tools for EO data processing in ESA’s SNAP toolbox
[56]. Docker images are available on Dockerhub with the ESA SNAP toolbox and GPT and for
this demonstrator the atavares/esa-snap was selected [58]. As Hopsworks is running within
the TEP and Creodias infrastructure, it has been extended to access the plethora of EO data
provided by these services, as described in section 5 Data Ingestion. In this example, a
Docker job is setup in Hopsworks that uses the GPT tool from the atavares/esa-snap Docker
image that is pulled from Dockerhub, reads Sentinal-1 data from the Creodias provided data
storage, runs the gpt tool to undersample the input data and outputs the data in the
Hopsworks datasets browser. Figure 26 shows the input data that is mounted as a volume
with the Docker job so that the GPT tool can read and process it.

[eouser@hopsworks-2 ~]$ 1s -1 /eodata/Sentinel-1/SAR/GRD/2021/04/14/S1A_EW_GRDM_1SDH_20210414T064754 20210414T064858_037443_0469F8_FFAD.SAFE

-X. 1 root root 0 Apr 14 10:27
. 1 root root 21640 Apr 14 10:27
. 1 root root 0 Apr 14 10:27
-X. 1 root root 0 Apr 14 10:27
-X. 1 root root 15109 Apr 14 10:27
. 1 root root 0 Apr 14 10:27

Figure 26. EO data from CREODIAS in the Hopsworks PolarTEP cluster

Figures 27-29 show the configuration of this particular job, an overview of previous
executions of the job, and the output data in the datasets browser.

Platform Software Architecture - Version Il, D1.6

EXTREME
EARTH H2020-825258

Hopsworks K'tep

I rtjob
Job definition @

Job name - preprocessing

ExtremeEa

Jupyter

Job type - DOCKER
Kafka

Job details

Feature Store

) Dockerimage @ i.\zec/ecasnap
Experiments

Docker command @ Jbin/bash

Models
Docker command arguments @ ~c,echo -Xmx8G > /us/local/snap/bin/gpt.ymoptions && gpt Undersample -Ssource=/data/S1A_EW_GRDM_1SDH_2021041¢
Model Serving

Configure and create

Airflow
Memory (MB): 10000
Data Sets
CPU cores: 1 v
Settings
GPUs: 0 v
Python
Output path: Select...

Members
/Projects/ExtremeEarth/PrePro

cessed
Cluster Utilization:

Support Advanced configuration »

Documentation -

Figure 27. Docker job configuration for EO data pre-processing with ESA/SNAP and GPT

ExtremeEarth ¢

Jupyter &

w
o Search: [yupea v [spepon ~ Jobs/page: 10
03
Name Created on ¥ Type Owner Ongoing Actions
Kafka
Feature Store preprocessing Apr 30,2021 4:55:21 PM DOCKER Theofilos Kakantousis 0 > s n More ~
B It . " o "
St Submitter Submitted at v Progress State Status Duration Actions
(=D Theofilos Kakantousis (theo0000) Apr 30,2021 5:05:31 PM T rinished - 0113 i B B n
RIcIESSN i Theofilos Kakantousis (theo0000) Apr 30,2021 5:03:13 PM T inished - o112 i B B n
Airflow N . .
Theofilos Kakantousis (theo0000) Apr 30,2021 5:00:34 PM T inished - 01:16 i B B
DS Theofilos Kakantousis (theo0000) Apr 30,2021 4:56:34 PM T inished - 01:41 i BB n

Settings

Python

Members

Cluster Utilization: 2%

Figure 28. Docker job executions overview

Platform Software Architecture - Version Il, D1.6

EXTREME
EARTH H2020-825258

(L)) Q = :": theo@logicalclocks.com +

ExtremeEarth DataSets / PreProcessed / Undersample.data &

Jupyter

Jobs

Type Name Owner Last modified File size
Kafka

] tie_point_grids Theofilos Kakantousis Apr 30,2021 5:06:54 PM

Feature Store

vector_data Theofilos Kakantousis Apr 30,2021 5:06:54 PM

= (0

Experiments

Amplitude_HH.img Theofilos Kakantousis Apr 30, 2021 5:06:53 PM 106.7MB
Models

am
v

Amplitude_HV.img Theofilos Kakantousis Apr 30, 2021 5:06:53 PM 106.7 MB
Model Serving
Amplitude_HV.hdr Theofilos Kakantousis Apr 30,2021 5:06:54 PM 0.2KB

Airflow

0 o o S Y |
rrereso

Amplitude_HH.hdr Theofilos Kakantousis Apr 30,2021 5:06:54 PM 0.2KB

Settings

Python

T BT XY

Members

)

Cluster Utilization: 2%

Support <

Documentation -

Figure 29. EO data from Creodias in the Hopsworks PolarTEP cluster

7. Feature Engineering and Data Validation

7.1 Feature Store
Feature engineering can be described as the process with which domain knowledge on
ingested data is applied, in order to create features that are used in further stages of the DL
pipeline (Training). With the continuous growth in input data and increased complexity of DL
pipelines, arose the need for a framework that facilitates features engineering and reduces
the complexity of managing features.

To improve the management of curated feature data, Hopsworks has been extended with a
new framework named Feature Store. The Feature Store acts as the central management
layer for curated data in an organization and it serves as the interface between data
engineering and data science teams. The motivation of feature engineering is to generate
reusable features that can be shared across different teams in an organization and can
facilitate developing new ML models, as depicted in Figure 30. Benefits the Feature Store
brings include reuse of features across pipelines, feature discoverability with free-text search
across an organization's feature data, applying software engineering principles onto machine
learning features with versioning, documentation, and access-control, time-travel by
fetching past feature data that were used for training particular model, scalability in terms of
being able to manage multiple terabytes or even bigger feature datasets, analysis so data
scientists can gather useful insights regarding data distribution, correlation, etc. [13].

Platform Software Architecture - Version Il, D1.6

s7\"
'\O,a

EXTREME

EARTH H2020-825258
Raw /Structured Data Models
m X
Feature Engineering - Training . W
. - —p | Feature Store)= ® . i

Figure 30. The feature store as the link between Feature Engineering and Training

To achieve all the aforementioned properties, the Feature Store is implemented on scalable,
fault-tolerant services. Offline data is stored in Apache Hive [14], a scalable data warehouse
built on top of Apache Hadoop, and online data is stored in MySQL Cluster. Offline features
can be used for training/experimentation and are used mostly in batch-oriented use cases
where past feature data can be fetched or huge volumes of feature data can be analysed to
generate statistics. Online features need to be accessible in real-time for pipelines that need
to get data at prediction time. Besides storing data, the Feature Store utilizes the Spark
integration in Hopsworks, described in the previous sections, to compute and analyze
features. Figure 31 shows the main components of the Hopsworks Feature Store.

Data Engineer Data Scientist
|.| Hopsworks Feature Store |.|
Add/remave faatures, Feature Mgmt Storage Access Discover features,

access control, create training data,
feature data validation. save models,

Discovery

Statistics read online/offline/on-
demand features,

historical feature values.

Y] Clusts
Access f’&,mfr Models
Control Online Features)
External DB Online
Feature Defn |___| Feature
"select ..” CRUD Apache Hive R
- Columnar DB Online Apps
(Offline Features)
Pandas or Feature Data Time Travel
PySpark Ingestion / Batch Apps
HopsFS
DataFrame Training Data
DEIE! Offline . (S3, HDFS)
Validation Features
JDBC
(SAS, R, etc)

AWS IAM Integration

Figure 31. Hopsworks Feature Store Architecture[13]

In the previous section, the Statoil/C-CORE Iceberg Classifier Challenge dataset used in this
demo was made available in Hopsworks by uploading it via the Hopsworks datasets browser
Ul. The second step in the pipeline is to do some feature engineering of the input dataset,

Platform Software Architecture - Version Il, D1.6 39

0.
EXTREME

EARTH H2020-825258
which is demonstrated in Figure 32. Initially, the raw dataset is read from its location in
HopsFS “hdfs://127.0.0.1:8020/Projects/ExtremeEarth/eodata/train.json” into a Pandas
dataframe, an open-source Python library for data manipulation and analysis [46], in the
Python program. The dataset is in json format and Pandas natively supports reading from
this file format. We extended Pandas with wrapper functions to read such file formats
directly from HopsFS [17]. Then a new feature band_avg is computed which is the average of
the two image bands, band_1 and band_2. Finally, the new raw_train_df is saved back to a
Hopsworks dataset in HopsFS. That way, the dataset is made available to further processing
steps. Figure 32 demonstrates the process described so far, with the full version of the
iPython notebook being available at [18].

Platform Software Architecture - Version Il, D1.6

EXTREME
FARTH H2020-825258

[3]:

Read the raw data

read the raw data to pandas dataframe
raw _train df = pd.read json(train ds path)

raw train df

id ... is_iceberg
dfdsfo13
e253388fd
58b2aaal
4cfc3als
271f93f4

LR =@
L s I s

1599 04ellz4e
1688 c7defefe
1681 bbaladfl
1682 7feeébb44
1683 9d8f326c¢

DD @@ @

[16804 rows x 5 columns]

Create new feature band_avg

a function for taking list average
def 1list_avglrow):
return [sumix)/2 for x in zip(rowl'band_1'1, row['band_2'1)}]

raw_train_df['band avg'l = raw_train_df.apply(lambda row: list avg(row}, axis=1)

raw_train_df

id ... band_avg
o dfdsf913 ... [-27.516239499999998, -28.346024, -29.84960749...
1 e25388fd ... [-21.874347999999998, -21.4524295, -20.7830205...
2 58bZazal ... [-24.737316, -24.348173, -22.762496, -21.28190...
3 4cfc3als ... [-25.172013999999997, -25.301306500000003, -25...
4 271f93f4 ... [-26.6069355, -26.712035999999998, -26.7120359...
1599 04e11240 ... [-29.4237985, -29.105365, -26.472991999999998, ...
1600 c7defefs ... [-27.437631580008002, -27.400965, -27.76694599...
1681 bbalaefl ... [-21.723625, -23.7647725, -23.9906165, -22.930...
16082 7feebbad4 ... [-24.262994499999998, -23.944199, -24.2661145,...
1683 9d8f326c ... [-22.1770385, -22.B817203499999998, -23.9654685...

[1604 rows x 6 columns]

#save raw train df in dataset
raw_train_df.to_json(path_or_buf='train_preprocessed_all.json', orient='records’)
hdfs.coov to hdfs{"train preorocessed all.ison". DATA FOLDER . overwrite=True)

Figure 32. Processing the raw dataset

Platform Software Architecture - Version Il, D1.6 41

0.
EXTREME

EARTH H2020-825258
The next step of this stage is to read the dataset that was processed previously, and create a
Feature Group in the Feature Store. Figure 33 demonstrates how this is achieved by using
the Hopsworks Feature Store Python API of the hsfs Python library. In this demo, the dataset
is read first from HopsFS into a PySpark dataframe train_preprocessed_all_df which is then
inserted into the Feature Store and more specifically into a Feature Group called iceberg. A
feature group is a documented and versioned group of features. In this example,
automatically generating statistics has been disabled (set to False) to speed up the creating
process. Statistics can be updated at any time after the Feature Group is created, either
through the Ul or the API.

Create and save features to the Feature Store

conn = hsfs.connection()
fs = conn.get_feature_store()

Connected. Call ".close() to terminate connection gracefully.

icebergs_fg = fs.create feature group(
"iceberg",
time_travel format=None,
statistics_config=hsfs.statistics config.StatisticsConfig(enabled=False, correlations=False, histograms=False, columns=[]),
description="Training dataset in Feature Store for iceberg classification"
)

icebergs_fg.save(train_preprocessed_all_df)

Figure 33. Create and populate the Feature Group

The next step is to export the feature data into a training dataset in tfrecord format, which
can be used by the next pipeline stage, Training. Figure 34 demonstrates how this is
achieved by using the Python API in the same notebook.

create a traiing dataset of TFRecord
icebergs_train td = fs.create training dataset(
"train_tfrecords_iceberg classification dataset",
statistics_config=hsfs.statistics config.StatisticsConfig(enabled=False, correlations=False, histograms=False, columns=[]),
data_format = "tfrecords"”
).save(icebergs_train_df)
VersionWarning: No version provided for creating training dataset ‘train_tfrecords iceberg classification dataset', incremented version to “1'.
create a traiing dataset of TFRecord
icebergs_test td = fs.create training dataset(
"test_tfrecords_iceberg classification_dataset",
statistics_config=hsfs.statistics config.StatisticsConfig(enabled=False, correlations=False, histograms=False, columns=[]),

data_format = "tfrecords"”
).save(icebergs_test_df)

Figure 34. Creating training and test datasets in tfrecord format

Users are also able to interact with the Feature Store from the Hopsworks Ul. Figure 35
shows the feature group overview in the Hopsworks Ul.

Platform Software Architecture - Version Il, D1.6

EXTREME
EARTH H2020-825258

£ vopsworks K'tep
L -

ExtremeEarth ¢ Vel
FeatureGroups ~ TrainingDatasets FeatureSearch Feature Store Details Storage Connectors Integrations rJ

Search: [4m3p0n > [4p1pon - Hits per page: 20)

-
Jupyter I

Jobs. o8

Feature Group Details
Kafka

Name v Description Created Type ® Online @ Version
1d 30
i iceberg Training dataset in Feature Store for iceberg Apr19,202110:16:04PM CACHED No
Experiments A classification Rame iceberg
icebergs Training dataset in Feature Store for iceberg Apr 26,2021 11:47:59 AM CACHED No Version 3

classification

Models
Description Training dataset in Feature Store for iceberg

Model Serving classification

icebergd Training dataset in Feature Store for iceberg Apr 26,2021 11:50:06 AM CACHED No P

Airflow classification FeatureStore extremeearth_featurestore

Creator tianzew@kth.se
Data Sets

Created Apr 19,2021 10:16:04 PM

Settings

Last Read Apr 19,2021 10:16:41 PM
Last Modified Apr 19,2021 10:16:20 PM

Time Travel none
Format

Actions w Z ® + v @

Offline (Hive) Table Details
Online (MySQL) Table Details

Jobs
Documentation

e ¢ ©o ©

API

Figure 35. iceberg feature group in Hopsworks

7.2 Feature Validation

Feature validation is the process of inspecting and cleansing data to be used as features in
machine learning models in order to ensure their quality is sufficiently good for them to be
processed by the subsequent stages of the DL pipeline. The process of performing feature
validation can greatly vary in terms of implementation from among DL pipelines or among
data engineers and scientists. A reason for this is that data validation is not a strict set of
rules that need to be applied to ingested data, rather is a set of best practices and some
common rules, derived typically from the domain of statistics.

In ExtremeEarth, there is one more constraint that needs to be taken into account when
establishing a feature validation process, which is that the latter needs to be applied to large
volumes of data in a distributed storage and processing environment. In addition, data
validation in this DL pipeline context is applied to the feature data that reside in the Feature
Store and then are extracted in the form of training or test datasets to be served as input in
the Training stage. To achieve data validation at scale, the Hopsworks Feature Store has been
extended to support feature validation by introducing the concepts of Feature Expectations
and Validation rules/results. This validation framework is built on Apache Spark and Deequ
[25]. Deequ is an open-source library built on top of Apache Spark that helps developers
establish data validation rules and extract useful information regarding large datasets.

To demonstrate feature validation, the validation rules applied on the ingested dataset are
shown in the table below. A full list of validation rules supported in Hopsworks is available at
the feature validation guide of the feature store documentation page [55].

Platform Software Architecture - Version Il, D1.6

HAS_DATATYPE ACCEPTED_
TYPE

HAS_MAX VALUE

HAS_MIN VALUE

SN
\(:b

EXTREME

EARTH
String -
Fractional Quantitative
Fractional Quantitative

H2020-825258

Assert on the
fraction of rows
that conform to
the given data

type.

Assert on the
max of a
feature.

Assert on the
min of a
feature.

These rules were grouped in two feature store expectations which were then attached to the

iceberg feature group as shown in the code snippet in figure 36. In particular:

1. HAS_DATATYPE: Asserts that the feature id of the iceberg feature group does not
contain null values. This is asserted by setting the max allowed null values to zero.

Additionally, the is_iceberg label is also expected to only contain numbers by setting

the threshold for required numeric values of is_iceberg to 1.
2. HAS_MAX: Assertion on the maximum allowed value of the is_iceberg label, which is

settol

3. HAS_MIN: Assertion on the minimum allowed value of the is_iceberg label, which is

set to O.

Platform Software Architecture - Version Il, D1.6

EXTREME
FARTH H2020-825258

Create feature expectations with validation rules

expectation_id = fs.create expectation("icebergs id",

description="validate inc_angle feature values",

features=["id"],

rules=[Rule(name="HAS DATATYPE", level="ERROR",accepted type="Null", max=0)])
expectation_id.save()

expectation_label = fs.create expectation("is_ iceberg",
features=["is iceberg"],
description="validate is_iceberg label values",
rules=[Rule(name="HAS DATATYPE", level="ERROR", accepted type="Integral", min=1), Rule(name="HAS MAX", leve

expectation_label.save()

expectation.rules[0].to dict(){'name': 'HAS _DATATYPE', 'level': 'ERROR', 'min': None, 'max': 0, 'value': None, 'pattern': None, ‘'acceptedType': 'Nul
1', 'legalvalues': None}

ExpectationsApi.expectation.to dict(){'name': 'icebergs id', 'description': 'validate inc_angle feature values', 'features': ['id'], 'rules': [<hsfs
ule.Rule object at 0x7f219dbfad90>]}

ExpectationsApi.expectation.rules[0].to dict(){'name': 'HAS DATATYPE', 'level': 'ERROR', 'min': None, 'max': @, 'value': None, 'pattern': None, 'acc
tedType': 'Null', 'legalValues': None}

ExpectationsApi.expectation.payload{"name": "icebergs id", "description": "validate inc_angle feature values", "features": ["id"], "rules": [{"name"
"HAS_DATATYPE", "level": "ERROR", "min": null, "max": @, "value": null, "pattern": null, "acceptedType": "Null", "legalValues": null}]}
expectation.rules[0].to dict(){'name': 'HAS DATATYPE', 'level': 'ERROR', 'min': 1, 'max': None, 'value': None, 'pattern': None, 'acceptedType': 'Int
ral', 'legalValues': None}

ExpectationsApi.expectation.to dict(){'name': 'is_iceberg', 'description': 'validate is_iceberg label values', 'features': ['is_iceberg'], 'rules':
hsfs.rule.Rule object at 0x7f21b8c9be90>, <hsfs.rule.Rule object at ©x7f219db31490>]}

ExpectationsApi.expectation.rules[0].to dict(){'name': 'HAS DATATYPE', 'level': 'ERROR', 'min': 1, 'max': None, 'value': None, 'pattern': None, 'acc
tedType': 'Integral', 'legalValues': None}
ExpectationsApi.expectation.payload{"name":
ame": "HAS DATATYPE", "level": "ERROR", "min
e": "HAS_MAX", "level": "ERROR", "min": 1, "max":

s_iceberg", "description": "validate is iceberg label values", "features": ["is_iceberg"], "rules": [{
"max": null, "value": null, "pattern": null, "acceptedType": "Integral", "legalValues": null}, {"n
1, "value": null, "pattern": null, "acceptedType": null, "legalValues": null}]}

=

Create and save features to the Feature Store

icebergs_fg = fs.create feature group(
"iceberg",
time_travel format=None,
statistics config=hsfs.statistics config.StatisticsConfig(enabled=False, correlations=False, histograms=False, columns=[]),
expectations=[expectation_id, expectation_ labell],
validation_type="STRICT",
description="Training dataset in Feature Store for iceberg classification"

)

icebergs_fg.save(train_preprocessed all df)

<hsfs.feature_group.FeatureGroup object at ©x7f219dc02e90>
VersionWarning: No version provided for creating feature group “iceberg’, incremented version to '6°.

Figure 36. Feature expectations Python APl example

Expectations @ see data validation activity
2 expectations- configured in strict mode (data is ingested only on data validation success) Attach an expectation

icebergs_id 0 0 0 Datatype id W 7 o

is_iceberg 0 0 0 Datatype, Maximum, Minimum is_iceberg E 7/ ©

Figure 37. Feature expectation in the Hopsworks Ul

The validation type is set to Strict, which means that if any expectation is not met then the
data will be inserted into the feature group. The rest of the validation types are:

e WARNING: Data validation is performed and feature group is updated only if
validation status is "Warning" or lower

e ALL: Data validation is performed and feature group is updated only if validation
status is "Failure" or lower

e NONE: Data validation not performed on feature group

Platform Software Architecture - Version Il, D1.6 45

EXTREME
EARTH H2020-825258

The validation results of expectations for the iceberg feature group are displayed in JSON
format in figure 38 and can be accessed via the feature store API or via the Hopsworks Ul.

Retreving validation results

import json
[print(json.dumps(validation.to dict(), indent=2)) for validation in icebergs_fg.get validations()]

"validationId": 1026,
"validationTime": 1620313234638,
"expectationResults": [

{
"expectation": {
"features": [
widn
1,
"rules": [
"level": "ERROR",
"max": 0.0,
"name": "HAS DATATYPE"
H
1.
"description”: "validate inc _angle feature values"
"name": "icebergs id"
T
"results": [
{
"features": [
widn
1,
"message": "Success",
"rule": {
"level": "ERROR",
"max": 0.0,
"name": "HAS DATATYPE"
H
"status": "SUCCESS",
"value": "Distribution(Map(Boolean -> DistributionValue(©,0.0), Fractional -> DistributionV
0), String -> DistributionValue(1564,0.9750623441396509)),5)"
}
1,
"status": "SUCCESS"
Iy
{

"expectation": {
"features": [
"is iceberg"
I,

"rules": [

"level": "ERROR",

"min": 1.0,
"name": "HAS DATATYPE"
H
{
"level": "ERROR",
"max": 1.0,
"min": 1.0,
"name": "HAS_MAX"
b
{

Figure 38. Feature validation results for an ingested dataframe

Platform Software Architecture - Version Il, D1.6 46

EXTREME
FARTH H2020-825258

2021-05-06 05:00:35
icebergs_id edit>
success warming sert
1 o
eatures
id
axpectation ules

datatype L
is_iceberg edit>
swccess warmig sert
3 o o
fosurss
is_iceberg
.........

datatype o

Figure 39. iceberg feature group validations in Hopsworks Ul

Platform Software Architecture - Version Il, D1.6 47

O.
EXTREME

FARTH H2020-825258
8. Training
For doing machine learning training, it is useful to have a common abstraction that defines
the type of training, the configuration parameters, the input dataset, and the infrastructure
environment that the machine learning program runs in. In Hopsworks, the abstraction of an
Experiment is used to encapsulate the aforementioned properties. To productionize ML
models, it is important to be able to easily run a past experiment in case for example a
software bug was discovered and the models need to be developed again based on
previously seen data. A repeatable experiment is an abstraction that enables users to rerun
a past experiment by managing to reproduce the execution environment, fetch the exact
same data the original experiment ran on, and set the same configuration properties as well.

Section “Experiments & Distributed Training” of deliverable D1.1 describes initial work done
on the Hopsworks Experiments framework. D1.1 focused on Experiments (section 7.1),
Parallel Experiments (7.2), and Distributed Training (7.3). This deliverable builds on this work
by demonstrating how to run all three types of experiments on the Iceberg dataset used by
the previous stages of the Deep Learning pipeline.

Furthermore, the Experiments framework in Hopsworks has been extended with Maggy, a
framework for distribution-transparent ML experiments, including distributed training,
hyperparameter tuning, and ablation studies [19] [40] .

8.1 Experiments

Machine learning training was developed with TensorFlow version 2.4, an open-source
end-to-end ML platform [47]. First, a training function needs to be defined that will be given
as input into the Hopsworks experiments APl that tracks the metadata of the training
program and creates an instance of the Experiments abstraction. The training function first
compiles the model that has been created in a previous cell of the notebook and then adds
some callbacks for configuration of the TensorBoard. Then the Keras estimator, part of the
Keras Deep open-source neural-network Python library [48], is used to train and evaluate
the model. The input of the model is fetched from the training and test TFRecord datasets
that were created from the feature store in the previous DL stage (section 6). After training is
completed, the model is exported by using the serving module of the hops-util-py library of
Hopsworks. Figure 40 shows the Jupyter configuration used to run the experiment.

Platform Software Architecture - Version Il, D1.6

EXTREME
FARTH

H2020-825258

logs B~ Jupyterlab B

Python Experiments Spark

Experiments

Starting Jupyter with this mode will configure the PySpark Kernel.

O Parallel Experiments O Distributed Training

@ Experiment

Hours to shutdown: 6 v
Driver memory (MB): 2048

Executor memory (MB): 4096

Number of GPUs: 1

Advanced configuration v
Base Directory: [upyter ~

Fault-tolerant mode: B OFF

+ [Archive No additional archives

+ W Jar No additional jars

+ I Python No additional python dependencies
+RiFile No additional files

More Spark Properties: ‘

Git: DIEEGIEE GitHub | GitLab

Experiment
Run python wrapper functions on PySpark to run parallel

hyperparameter optimization or distributed training
orchestrated on PySpark executors.

The simple Experiment abstraction corresponds to a single
Python experiment, for example any hyperparameters or
other configuration is hard-coded in the code itself.

Want to learn more? See an example and docs.
Documentation and resources
readthedocs

hops python api

examples

github

website
Accessing datasets >
Importing external modules >

Interact with filesystem »

Figure 40. Jupyter configuration for training the iceberg detection model

Figures 41-44 demonstrate the main parts of the training notebook, namely “train and
evaluate”, exporting the model, and launching the experiment with the experiment API.

Platform Software Architecture - Version Il, D1.6

49

EXTREME
FARTH H2020-825258

def create model(input_shape):
"""Returns a CNN model for image classification.

Parameters:
- input_shape(tuple): input shape of the CNN model.

Returns:
- a TensorFlow keras model that is not compiled yet.

model = tf.keras.models.Sequential()

Conv Layer 1

model.add(tf.keras.layers.Conv2D(64, kernel size=(3, 3), activation='relu', input_shape=input_shape))
model.add(tf.keras.layers.MaxPooling2D(pool size=(2, 2), strides=(2,2)))
model.add(tf.keras.layers.Dropout(0.2))

Conv Layer 2

model.add(tf.keras.layers.Conv2D(128, kernel size=(3, 3), activation='relu'))
model.add(tf.keras.layers.MaxPooling2D(pool size=(2, 2), strides=(2, 2)))
model.add(tf.keras.layers.Dropout(0.2))

Conv Layer 3

model.add(tf.keras.layers.Conv2D(128, kernel size=(3, 3), activation='relu'))
model.add(tf.keras.layers.MaxPooling2D(pool size=(2, 2), strides=(2, 2)))
model.add(tf.keras.layers.Dropout(0.2))

Conv Layer 4

model.add(tf.keras.layers.Conv2D(64, kernel size=(3, 3), activation='relu'))
model.add(tf.keras.layers.MaxPooling2D(pool size=(2, 2), strides=(2, 2)))
model.add(tf.keras.layers.Dropout(0.2))

Flatten the data for upcoming dense layers
model.add(tf.keras.layers.Flatten())

Dense Layers
model.add(tf.keras.layers.Dense(512))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.Dropout(0.2))

Dense Layer 2
model.add(tf.keras.layers.Dense(256))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.Dropout(0.2))

Sigmoid Layer
model.add(tf.keras.layers.Dense(1))
model.add(tf.keras.layers.Activation('sigmoid'))

return model

Figure 41. Iceberg detection model architecture

Training dataset in TFRecord format

train_ds = fs.get training dataset(name=TRAIN_FS_NAME).tf data(target name='is iceberg')

train_ds = train ds.tf record dataset(process=False, batch size=TRAIN BATCH SIZE, num_epochs=EPOCHS)

train_ds_processed = train_ds.map(decode).shuffle(SHUFFLE_BUFFER SIZE).repeat(EPOCHS).cache().batch(TRAIN BATCH SIZE).prefetch(tf.data.experimental.AUTOTUNE)

Evaluation dataset in TFRecord format

eval _ds = fs.get training dataset(name=TEST FS _NAME).tf data(target name='is iceberg')

eval_ds = eval ds.tf record dataset(process=False, batch_size=EVAL BATCH SIZE, num_epochs=EPOCHS)

eval ds_processed = eval ds.map(decode).shuffle(SHUFFLE BUFFER SIZE).repeat(EPOCHS).cache().batch(EVAL BATCH SIZE).prefetch(tf.data.experimental.AUTOTUNE)

Figure 42. Iceberg detection model training function (read training data)

Platform Software Architecture - Version Il, D1.6 50

EXTREME
EARTH H2020-825258

Start training the model.
history = model.fit(
train_ds processed,
epochs=EPOCHS,
verbose=1,
validation data=eval ds processed,
callbacks=callbacks
)

'metrics' is the return value of this function;
The values in 'metrics' will be printed to the notebook cell that launch the experiment
metrics = {

"train loss': history.history['loss'][-1],

'train accuracy': history.history['accuracy'][-1],

'val loss': history.history['val loss'][-11,

‘val_accuracy': history.history['val accuracy'][-1],

}
#ooee oo Training Process ----------------
A LR T Save and Export ----------------

Export model as savedModel
export path = tensorboard.logdir() + '/SavedModel'

tf.keras.models.save model(
model,
export path,
overwrite=True,
include optimizer=True,
save format=None,
signatures=None,
options=None

)

'hopsworks model' is the moudle provided by hopsworks for exporting models

'hopsworks model' is a different name of 'hops.model' to avoid name clashes
hopsworks model.export(export path, 'shipIcebergClassifier', metrics=metrics)
#oamm - Save and Export ----------------

return metrics

Figure 43. Iceberg detection model training function, launch and export model

experiment.launch(train_fn, name='Iceberg classification with featurestore and TFRecords', local_logdir=False)
Finished Experiment

('hdfs://rpc.namenode.service.consul:8020/Projects/ExtremeEarth/Experiments/application 1619040920875 0174 1', {'train_loss': 0.1419401615858078, 'train_accuracy': 0.949152827
2628784, 'val loss': 15.787124633789062, 'val accuracy': 0.8944281339645386, 'log': 'Experiments/application_ 1619040920875 0174 1/output.log'})

Figure 44. Iceberg detection model experiments API launch training

Platform Software Architecture - Version Il, D1.6 51

EXTREME
EARTH H2020-825258

Hopsworks [tep

ExtremeEarth §¢

Search Iceberg classification_with fi [£] 4/11/2021 v [smpa - All Members M G
e =
* Name Metric User. Start Vv End State Actions.
Jobs 08
3 3 §
Iceberg_classification_with_featurestore_and_TFRecords Tianze Wang Apr 22,2021 1:49:07 PM FAILED
@ Iceberg_classification_with_featurestore_and_TFRecords Tianze Wang Apr 22,2021 12:15:51 PM FINISHED
Iceberg_classification_with_featurestore_and_TFRecords Tianze Wang Apr 22,2021 12:13:43 PM FINISHED
Function launch
ExperimentType EXPERIMENT
Anaconda Environment a
Airflow
Program o)
Data Sets © o
— Experiment Directory Experiments/application_1619040920875_0005_2
Settings
Outputs
Python
loss log
Members
3.1718249320983887]
Cluster Ut
Iceberg_classification_with_featurestore_and_TFRecords Tianze Wang Apr 22,2021 12:10:58 PM FAILED + ® i
Iceberg_classification_with_featurestore_and_TFRecords Tianze Wang Apr22,2021 12:03:58 PM FINISHED + B
Iceberg_classification_with_featurestore_and_TFRecords. Tianze Wang, Apr 22,2021 12:00:35 PM FAILED + BN

Iceberg classification_with_featurestore_and_TFRecords Tianze Wang Apr22,202111:56:14 AM FINISHED 4
Iceberg._classification_with_featurestore_and_TFRecords Tianze Wang Apr22,2021 11:54:00 AM FAILED T+
Iceberg classification_with_featurestore_and_TFRecords Tianze Wang Apr22,202111:51:35 AM FAILED 4

Iceberg_classification_with_featurestore_and_TFRecords Tianze Wang Apr22,202111:37:52 AM FAILED + IE3E)

Documentation

atead vTail

2021.04-22T10:13:59.000276;

2080Ti, Jge: 0/11554 (MB), C

2021-04-22T10:13:59.000416: v
2021-04-22T10:13:59.000448: Started running task

2021.04-22T10:13:59.007604: Connected. Call " close()" to terminate connection gracefully.
2021.04-22T10:14:01.882682:

2021.0422T10:14:01.922477:

2021.04-22T10:14:02.538199: Epoch 112

2021.04-22T10:14:02577578;

2021.04.22T10:14:02.578484;

2021-04-22710:14:08.373240:
U usage
20807, ge: 734/11554 (MB), C

2021.0422T10:14:12.097128;
2021.04-22T10:14:12.098450:

2021.04-22T10:14:13.235974: Epoch 2/2

20210422 model to:
2021.04-22T10:14:14.964021:

2021.04-22T10:14:14.965165;

2021-04-22T10:14:17.214795: Done exporting!

2021-04-22710:14:17.285405; Finished task - took 0 hours, 0 minutes, 18 seconds
2021.04-22T10:14:17.285499:

2021.04-22T10:14:17.285550: Cleaning up.

2021.04.22T10:14:17.811666: Finished running task

Figure 46. Experiment logs shown from the Hopsworks Experiments registry

8.2 Parallel Experiments
Parallel experiments can significantly speed up the process of exploring hyper-parameter
combinations that work best for the ML model. Hopsworks Experiment APl makes
hyper-parameter search trivial, by allowing users to define the search space in a dictionary
which is provided as input into the same experiment.launch method demonstrated in

Platform Software Architecture - Version Il, D1.6 52

)

0.

EXTREME
FARTH

H2020-825258

Section 7.1. The rest of the notebook, including the training function and exporting the
model, is the same as the single experiment one. Figures 47 and 48 demonstrate how to set

different learning rates and feed them as input into the notebook.

args_dict = {'learning_rate': [0.001, ©.0005, 0.0001, 0.005, 0.003, 0.009]}

experiment.launch(train_fn, args dict, name="Iceberg classification with Parallel Training", local_logdir=True)

Finished Experiment

('hdfs://rpc.namenode.service.consul:8020/Projects/ExtremeEarth/Experiments/application 1619040920875 0054 1', None)

Figure 47. Iceberg hyper parameter tuning with parallel experiments

Iceberg_classification_with_Parallel_Training Tianze Wang Apr23,202112:33:42 PM

Function launch

ExperimentType EXPERIMENT

Anaconda Environment a o

Program a o

Experiment Directory Experiments/application_1619040920875_0054_1

Model Models/ship_iceberg_classifier/9

Parameters Outputs

learning_rate val_loss log train_loss

0.0001 0.48354488611221313 a 0.5344764590263367
0.0005 0.3290237784385681 a 0.2499350756406784
0.001 0.32901686429977417 a 0.2715916037559509
0.003 0.37866631150245667 a 0.3936786651611328
0.005 0.3994578719139099 a 0.45547741651535034
0.009 0.6926142573356628 a 0.6882401704788208

Apr 23,2021 12:39:00 PM

train_accuracy

0.6912114024162292

0.8864607810974121

0.8774346709251404

0.8272367119789124

0.7680126428604126

0.5334916710853577

FINISHED 7+ B

val_accuracy

0.7771260738372803

0.8533724546432495

0.8416422009468079

0.8357771039009094

0.7976539731025696

0.5190615653991699

Figure 48. Iceberg hyper parameter tuning with parallel experiments in the Hopsworks

Experiments registry

While training is ongoing, users can follow the progress of the parallel experiments by
navigating to the TensorBoard of this experiment via the Hopsworks Experiments service.
Figure 49 shows the tensorboard of the parallel experiments notebook.

Platform Software Architecture - Version Il, D1.6

(9)
9

EXTREME

EARTH

H2020-825258

Figure 49 . Iceberg hyper parameter tuning with parallel experiments tensorboard

Jupyter needs to be launched with the Parallel Experiments configuration to enable running
notebooks with the parallel experiments API. Figure 50 shows how Jupyter was started for
this running the iceberg parallel experiments.

2 Hopsworks K tep

ExtremeEarth ¢

ata Sets

8

TBTRDPBr (0

m
5

O oistributed Training

Executor memory (MB): 4096

Number GPUS per
Executor:

Faralesm
Advanced configuration v
BaseDiectory:

Faulttolerant mode: » oFF

More Spark Properties:

Parallel Experiments

Documentation and resources

readthedocs
hops python api

examples

githab

website

Accessing datasets >

Importing extemal modules >

Interact with filesystem >

Figure 50. Jupyter configuration for parallel experiments with GPUs

Platform Software Architecture - Version Il, D1.6

O.
EXTREME
FARTH H2020-825258
8.3 Distributed Training

For distributed training, the same model was used as in the previous sections, however,
Jupyter was started with the Distributed Training configuration. In particular, the Mirrored
Strategy as shown in Figure 51. Figures 52 and 53 demonstrate how the experiments API is
used for distributing training from a Jupyter notebook. Details of the architecture and
implementation of the distributed training experiments framework in Hopsworks is available
in the deliverable D1.5 Hops data platform integration guide for applications - version Il.

£ Hopsworks K tep
&

ExtremeEarth 3¢

o3
— Experiments Distributed Training
= Startin i thismode il configur th Pyspark el c
I
& O operiment | O Parallel xperiments | @ Distributed Training
-
° Hours to shutdown:
»
: Driver memor ry (MB):
=
Excutor memory (ME): Documentation and resources
Number GPUS per worker: 1 readthedocs
pi
— Disrbuton srategy: Maltorkerirored -
Workers:
Cluster iization: 0% gt
—
Advanced configuration v webste
BaseDiecory: supyter - Accessing datasets >
s w Importing extemal modules >
. N Interact with filesystem >

Figure 51. Distributed training Jupyter configuration. 2 workers with 1 GPU Each

Platform Software Architecture - Version Il, D1.6

e\
(9)
EXTREME
EARTH H2020-825258

#oo e Training Process ----------------

B Save and Export ----------------
Export model as savedModel

export path = tensorboard. logdir() + '/SavedModel'
export path = os.getcwd() + '/SavedModel’

tf.keras.models.save model(
model,
export_path,
overwrite=True,
include optimizer=True,
save_format=None,
signatures=None,
options=None

)

'hopsworks model' is the module provided by hopsworks for exporting models
'hopsworks model' is a different name of 'hops.model' to avoid name clashes

Only need to export the model on the chief
if json.loads(os.environ['TF CONFIG'])['task']['type'] == 'chief':
hopsworks_model.export(export path, 'ship iceberg classifier', metrics=metrics)

return metrics

Figure 52. Iceberg distributed training function

experiment.mirrored(train_fn, name='Iceberg Ship Classification with distributed training', metric_key='val accuracy')

Finished Experiment

(*hdfs://rpc.namenode.service.consul:8020/Projects/ExtremeEarth/Experiments/application 1619040920875 0162 7', {'train_loss': 0.29985445737838745, 'train_accuracy': 0.86603325
60539246, 'val loss': 0.2837695777416229, 'val accuracy': 0.8533724546432495, 'log': 'Experiments/application 1619040920875 0162 7/chief 0 output.log'})

Figure 53. Iceberg distributed training experiments API launch

The notebook itself for distributed training is available online in the ExtremeEarth GitHub
repository [34].

8.4 Hyperparameter Tuning with Maggy

Hopsworks has been extended with a new framework called Maggy for performing efficient
asynchronous optimization of expensive black-box functions on top of Apache Spark. Maggy
is not bound to stage-based optimization algorithms, contrary to existing frameworks.
Therefore it is able to make extensive use of early stopping in order to achieve efficient
resource utilization [19]. As of this deliverable, Maggy supports asynchronous
hyperparameter tuning of machine learning and deep learning models, and ablation studies
on neural network layers as well as input features.

The main component of Maggy is an RPC mechanism that is implemented that enables
results of trials to be reported from the executors back to the driver in Spark. The Optimizer

Platform Software Architecture - Version Il, D1.6

(9)!
EXTREME
FARTH H2020-825258
component that runs on the driver is then responsible for deciding when to stop a trial and
send new tasks to executors. The latter are blocked by long-running tasks so they can run
multiple trials for every scheduled task, instead of only one trial per task as was the case
previously.

Figure 54 depicts the RPC mechanism implemented between the driver and executors in
Maggy.

Y

Task,,

\/

Task_.
12

\/

Task,,

\ /

Task_
N

spans Driver

. Metrics New Trial

Figure 54. Maggy early stopping in Apache Spark

Creating and evaluating the model is similar to the previous experiments examples. The
training function train_fn in the iceberg Maggy notebook optimizes three hyper-parameters,
kernel, pool, and dropout. Figure 55 demonstrates how the Maggy reporter is configured in
the training function.

Platform Software Architecture - Version Il, D1.6

EXTREME
EARTH H2020-825258

def train fn(kernel, pool, dropout, reporter):
""""Wrapper function for the experiment.

Parameters:
- learning_rate: learning rate of the optimizer during training.

Returns:
- metrics: training summary.

Homme - Initialization ----------------
Establish a connection with the Hopsworks feature store
engine='training' 1s needed so that the executors in Spark can connect to feature store

connection = hsfs.connection(engine='training")
Get the feature store handle for the project's feature store
fs = connection.get feature store()

Clear session info
tf.keras.backend.clear_session()

Set up visible GPU
gpus = tf.config.experimental.list physical devices('GPU')
if gpus:
try:
Currently, memory growth needs to be the same across GPUs
for gpu in gpus:
tf.config.experimental.set memory growth(gpu, True)
logical gpus = tf.config.experimental.list logical devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical gpus), "Logical GPUs")
except RuntimeError as e:
Memory growth must be set before GPUs have been initialized
print(e)

#oemee e Hyperparameters ----------------

Number of epochs to training

EPOCHS = 10 # as we are limited with CPU for demo

Training batch size

TRAIN BATCH SIZE = 32

Evaluation batch size

EVAL BATCH SIZE = 1

Shuffle buffer size for TensorFlow dataset
SHUFFLE_BUFFER SIZE = 10000

learning rate of the optimizer during training

LEARNING RATE = 0.001

input shape of the model

INPUT SHAPE= (75, 75, 3)

Name of the training dataset in feature store

TRAIN FS NAME = 'train_ tfrecords iceberg classification dataset'
Name of the test dataset in feature sotre

TEST _FS_NAME = 'test tfrecords iceberg classification dataset'

Figure 55. Iceberg hyper-parameter optimization with Maggy - training function

Figures 56 and 57 demonstrate how the search space for hyper-parameters is defined with
Maggy and then how the experiment is launched by using the experiment.lagom API. The
output of the experiment.lagom invocation is printed in the notebook itself under the cell
that starts the experiment, and a progress bar gets updated as the trials finish executing.

Platform Software Architecture - Version Il, D1.6 58

ey
EXTREME
EARTH H2020-825258

Also, the print function is overridden to redirect the output from the workers output to the
cell output, which makes debugging and experimentation easier.

from maggy import Searchspace

The searchspace can be instantiated with parameters
sp = Searchspace()

Or additional parameters can be added one by one
sp.add('kernel', ('INTEGER', [3, 4]))
sp.add('pool', ("INTEGER', [2, 3]))
sp.add('dropout', ('DOUBLE', [0.10, 0.50]))

Hyperparameter added: kernel
Hyperparameter added: pool
Hyperparameter added: dropout

Figure 56. Iceberg hyper-parameter optimization with Maggy - search space

Platform Software Architecture - Version Il, D1.6 59

EXTREME
FARTH H2020-825258

Launch the hyperparameter optimization

from maggy import experiment
from maggy.experiment config import OptimizationConfig

config = OptimizationConfig(
num_trials=10,
optimizer='randomsearch',
searchspace=sp,
direction='max",
es_interval=1l,
es_min=2,
hb_interval=5,
name='Iceberg Classification Maggy'

)

result = experiment.lagom(train_fn=train fn, config=config)

HBox(chlldren (FloatProgress(value=0.0, description='Maggy experiment', max=10.0, style=ProgressStyle(descript..
Connected. Call ".close() to terminate connection gracefully.

Physical devices cannot be modified after being initialized

Connected. Call '.close()" to terminate connection gracefully.

Physical devices cannot be modified after being initialized

Epoch 1/10

Epoch 1/10

Epoch 2/10
Epoch 2/10
Epoch 3/10
Epoch 3/10
Epoch 4/10
Epoch 4/10
Epoch 5/10
Epoch 6/10

HFHOHOHROHOORHOOROORKRHKEKRRREOO

Figure 57. Iceberg hyper-parameter optimization with Maggy - launch

Once all trials are executed, a summary of results is printed as the final output, as can be
seen in Figure 58.

0: Epoch 10/10
You are running Maggy on Hopsworks.

------ RandomSearch Results ------ direction(max)

BEST combination {"kernel": 4, "pool": 3, "dropout": 0.14127066071482483} -- metric 0.5446287393569946
WORST combination {"kernel": 4, "pool": 3, "dropout": 0.4702859921298028} -- metric 0.2919609844684601
AVERAGE metric -- 0.35823622047901155

EARLY STOPPED Trials -- 0

Total job time 0 hours, 21 minutes, 1 seconds

Finished experiment.

Figure 58. Iceberg hyper-parameter optimization with Maggy - results

Platform Software Architecture - Version Il, D1.6 60

()
EXTREME
EARTH H2020-825258
8.5 Ablation studies

In the context of machine learning, we can define an ablation study as “a scientific
examination of a machine learning system by removing its building blocks in order to gain
insight on their effects on its overall performance”. Dataset features and model components
are notable examples of these building blocks (hence we use their corresponding terms of
feature ablation and model ablation), but any design choice or module of the system may be
included in an ablation study. By removing each building block (e.g., a particular layer of the
network architecture, or a set of features of the training dataset), retraining, and observing
the resulting performance, we can gain insights into the relative contributions of each of
these building blocks.

An ablation study can be thought of as an experiment that consists of several trials. For
example, each model ablation trial involves training a model with one or more of its
components (e.g., a layer) removed. Similarly, a feature ablation trial involves training a
model using a different set of dataset features, and observing the outcomes.

N

band 1 be band avg | is iceberg band 1 | band avg |is iceberg

2 —

24@48x48

24i@16x16 24@16x16

8@128x128 B@lzaxlas

[
— 8@64x64 LL%L e

F@ TF@ 5 I lr—*u,_f %Q;\ -

i

8@ 64x64 |

Max-Pool Convolution Dense
Max-Pool Convolution Max-Pool Dense

Figure 59. Ablation studies architecture

With Maggy, performing ablation studies of machine learning or deep learning systems is a
fairly simple task that consists of the following steps:

Creating an AblationStudy instance,
Specifying the components that you want to ablate by including them in your
AblationStudy instance,
Defining a base model generator function and/or a dataset generator function,
Wrapping your TensorFlow/Keras code in a Python function (called e.g., the training
function) that receives two arguments (model_function and dataset_function), and

e Launching your experiment with Maggy while specifying an ablation policy.

Platform Software Architecture - Version Il, D1.6

EXTREME
FARTH H2020-825258

Maggy will then take care of generating the corresponding ablation trials and executing
them in parallel.

from maggy.ablation import AblationStudy

create an AblationStudy instance
iceberg_ablation = AblationStudy('iceberg', training dataset version=1, label name="is iceberg")

pass the model generator function to ablation study
iceberg_ablation.set dataset generator(create_datasets)

set the base model generator
iceberg_ablation.model.set base model generator(create model)

add layers to the ablation study

iceberg_ablation.model.layers.include(['my _conv_1', 'my conv_2', 'my conv_3', 'my conv_4'])
iceberg_ablation.model.layers.include(['my_maxpool 1', 'my maxpool 2', 'my maxpool 3', 'my maxpool 4'])
iceberg_ablation.model.layers.include(['my dropout 1', 'my dropout 2', 'my dropout 3', 'my dropout 4'])

iceberg_ablation.model.layers.print_all()
add a layer group using a prefix

iceberg ablation.model. layers.include groups(prefix="'my conv')
iceberg ablation.model. layers.include groups(prefix="'my_maxpool')
iceberg ablation.model. layers.include groups(prefix="'my_dropout')

iceberg ablation.model.layers.print_all_groups()

print('\n\nAblation Study summary: \n {}'.format(iceberg ablation.to dict()))
Included single layers are:

my conv_1
my_dropout_1
my conv_2
my conv_3
my_maxpool_2
my_maxpool 1
my_maxpool 4
my_dropout_2
my_maxpool 3
my_conv_4
my_dropout_4
my dropout 3

Ablation Study summary:

{'training dataset name': 'iceberg', 'training dataset version': 1, 'label name': 'is iceberg', 'included features': [], 'included layer
s': ['my _conv_1', 'my dropout 1', 'my conv_2', 'my_conv_3', 'my maxpool 2', 'my maxpool 1', 'my maxpool 4', 'my dropout_2', 'my_maxpool
3', 'my_conv_4', 'my dropout 4', 'my dropout 3'], ‘custom dataset generator': True}

Figure 60. Maggy ablation studies notebook example - ablations

The above figure shows the process of defining a model ablation study experiment with
Maggy. Users can include individual layers, or “layer groups”, e.g., for blocks of similar layers
generated with loops.

After the training function is defined, the user has to pass it to Maggy’s lagom method to
launch the experiment in parallel (in case there are multiple workers):

Platform Software Architecture - Version Il, D1.6 62

EXTREME
FARTH H2020-825258

Create a config for lagom
from maggy.experiment config import AblationConfig

config = AblationConfig(name='Iceberg ship classifier ablation study', ablation_study=iceberg ablation, ablator='loco', description='Abla

from maggy import experiment

launch the experiment
result = experiment.lagom(train_fn=train_fn, config=config)

Ui CpuLl 107 2U

0: Epoch 19/20

0: Epoch 20/20

Warning: deepspeed and/or fairscale import failed. DeepSpeed backend and zero lvl 3
won't be available

You are running Maggy on Hopsworks.

------ LOCO Results ------

BEST Config Excludes {"ablated feature": "None", "ablated layer": "my conv_3"} -- metric 0.8944281339645386
WORST Config Excludes {"ablated feature": "None", "ablated layer": "my conv_1"} -- metric 0.8416422009468079
AVERAGE metric -- 0.877960741519928

Total Job Time 1 hours, 32 minutes, 58 seconds

Finished experiment.

Figure 61. Maggy ablation studies notebook example - results

Platform Software Architecture - Version Il, D1.6 63

(9)
EXTREME

FARTH H2020-825258
9. Model Analysis
Section 3.3 of deliverable D1.5 Hops data platform integration guide for applications -
version |l describes how Hopsworks users can use the What-If tool for doing model analysis
on Hopsworks. This demonstrator deliverable shows how this tool can be used to perform
model analysis on the demonstrator dataset. Deliverable D1.4, the previous version of this
deliverable, integrated TensorFlow Model Analysis (TFMA) with Apache Beam and Apache
Flink. This deliverable does not make use of this integration as it could be overly complex for
the majority of cases where model analysis needs to be done. Also, the tools involved have
frequent braking changes and are focused on execution in the Google cloud environment.
Users can still utilize the Python and Flink support in Hopsworks to use such tools if needed
as. The What-If tool covers the great majority of use cases and also fits seamlessly into the
current demonstrator that uses TensorFlow for model development. In addition, the What-If
tool provides powerful and interactive visualizations via Jupyter.

Hopsworks has been expanded to include the What-If as part of the default Python
environments that projects in Hopsworks come with. Therefore, users do not need to install
it separately avoiding any risks of Python library dependency conflicts as well.

Figure 62 shows the code snippet used to perform model analysis for the sea iceberg
classification model developed with the demonstrator dataset in this deliverable. Users set
the number of data points to be displayed, the test dataset location to be used for analysis
of the model, and the features to be used.

#@title Invoke What-If Tool for test data and the trained model {display-mode: "form"}

num_datapoints = 2000 #@param {type: "number"}
tool_height_in_px = 1000 #@param {type: "number"}

from witwidget.notebook.visualization import WitConfigBuilder
from witwidget.notebook.visualization import WitWidget

test_examples = df_to_examples(test_df, features_and_labels)

Setup the tool with the test examples and the trained classifier
config builder = WitConfigBuilder(test_examples).set _estimator and_feature spec(classifier, feature spec).set label vocab(['not iceberg', 'is iceberg'])
WitWidget(config builder, height=tool height in_px)

Figure 62. Model analysis what-if tool code snippet

Figure 63 depicts the performance and fairness of the model based on a particular feature of
the model. Figure 64 shows descriptive statistics for the feature spec provided to the what-if
tool.

Platform Software Architecture - Version Il, D1.6

EARTH

EXTREME

H2020-825258

Sortby
Configure “~ Custom thresholds for 2 values of inc_angle ® Count - ¢ X
Ground Truth Festure O T e Feature Value Count Threshold False Positives (%)~ False Negatives (%) Accuracy (%) F
is_iceberg v et
Costiuatio (2/eN) WHAT IS COST RATIO? ~ [29.9,45.3874) P S —, 06 27 163 61.0 064
The costof faee postivesreltivet alse -
1 negaies, R foropmizetion. More.
Slice by Buckets WHAT DOES SLICING DO? ROC curve (AUC: 0.62) () PR curve (AUC: 0.57) (D Confusion Matrix
. Shows the modef perormance an
eende sy tach et e Precicted Yes Prodictod No Total
N — B Acualves 34.4% (97) 163% (46) 50.7% (143)
Sice by (secondary) Zos = 08
<none> - H s houalNe 22.7% (64) 266% (75) 49.3% (139)
wmomer T 206 gos| f
3 $ 4 . Tow 57.1% (161) 42.9% (121)
204 Eoa
Faimess X 2oz : 02
Apply an optimization strategy o 0 {—
100 000 100
Select a strategy to automatically set classification thresholds, based on False positive ate Recall
the set cost ratio and data slices. Manually altering thresholds or
changing cost ratio will revert the strategy to custom thresholds',
v 1,145 B o 05 00 00 1000 1.00
@ Custom thresholds (O
O Ssingle threshold ® ROC curve (AUC: 0) PReurve (AUC:0) Confusion Matrix
O Demographic parity O 1 1] Predicted Yes Predicted No Total
sewives 00% () 00% (0 00% (0
O Equal opportunity O 208 06 © (0))
Equal 502 02 scairo 0.0% (o) | FOOORINNGEN 100.0% (13)
O Equal accuracy O ‘goz §7°2 Total 0.0% (0) 1000% (13)
O Group thresholds 2 06 “os
1 4
000 100 000
False posiive ate Recal
. .
Figure 63. Performance and Fairness of the model
Sort by
Feature order ~ [Reverseorder Feature search (regex enabled)
Features: int(2) float(5) string(3)
Numeric Features (7) Chartto show Categorical Features (3) Chart to show
Standard v Standard v
count missing mean stddev zer0s min median MaX Giog Dexpand count missing unique top freqtop avgstrlen @z @
inc_angle Inference value SRR
295 0% 3739 9 0% A 2 asm ‘ 295 0% 2 282 1
40
0 10 20 30 40
is_iceberg 1 g
295 0% 0.48 05 51.53% 0 0 1 I Inference label SHOW RAW DATA
20 295 0% 2 isiceberg 282 10.04 260
01 03 05 07 09 o
elementwise_diff_max
295 0% 2062 3.76 0% 1204 2025 3316 ‘ isiceberg noticeberg
10 Inference correct ‘SHOW RAW DATA|
v 1w 2 W 295 0% 2 correct 156 794
elementwise_diff_mean »
295 0% 604 235 0% 227 611 1239 ‘_
10 correct incorrect
3 s 7 9 m
elementwise_diff_min 260
295 0% 001 005 95.59% 0 0 053 I
w0
005 02 035 05
Datapoint ID 30
295 0% 147 853 034% 0 147 294 _
5
20 80 140 200 260
Inference score
295 0% 0.59 014 0% 012 0.61 08

Figure 64. Feature statistics

Platform Software Architecture - Version Il, D1.6

65

ey
(9
EXTREME
FARTH H2020-825258
10. Model Serving & Monitoring
Deliverable 1.1 provided design guidelines for productionizing model serving with

Hopsworks. After a model has been developed and exported by the previous stages in the
DL pipeline, it needs to be served so that external clients can use it for inference.

After the model is deployed, its performance needs to be monitored in real-time so that
users can decide when it would be the best time to trigger the training stage. Hopsworks has
been extended to provide support for TensorFlow serving and Scikit-learn, an open-source
ML Python library [51]. Hopsworks has been extended with a Kubernetes cluster on which
docker containers are deployed that run TensorFlow serving and Scikit-learn. Users have the
option to select the number of instances for model serving at runtime, therefore Hopsworks
provides users with the important property of elasticity.

This demo uses TensorFlow serving as the model has been developed and exported using
TensorFlow. Inference requests are proxied through the Hopsworks REST API to provide
secure multi-tenant access to Hopsworks where role-based access control is done based on
projects. Project members are allowed to submit requests only to the models being served
from within their projects.

Inference requests are logged in Apache Kafka [20] which is provided as a multi-tenant
service in Hopsworks. Avro schemas [21] are attached to Apache Kafka topics in Hopsworks.
By default, each project gets a default inference schema, depicted in Figure 65.

Platform Software Architecture - Version Il, D1.6

ey
EXTREME
EARTH H2020-825258

=3 {}JIsoN
3 []fields

3{}o

name : "modelld"
type : "int"

|
a{)

m name : "modelName”
type : "string"

name : "modelvVersion”
type : "int"

502

[]
a(}3
® name : "requestTimestamp”
m type : "long"
3{})4
®m name : "responseHttpCode"
m type : "int"
2{)5
m name : "inferenceRequest”
m type : "string"
3{)s
m name : “inferenceResponse”
type : "string"

[]

3L}7
®m name : "servingType"
m type : "string”

m name : “inferencelog”

m type : "record”

Figure 65. Inference avro schema

The schema is used to store the inference requests in Apache Kafka in a structured way, so
that client applications can then read in real-time the inference requests and apply some
business logic on how the model is performing. Figure 66 depicts the overall architecture of
model serving and monitoring in Hopsworks.

Platform Software Architecture - Version Il, D1.6 67

S\
EXTREME
EARTH H2020-825258

Inference
Request Response

J, T Kubernetes

Hopsworks
1. Access Control
FPanaTseRteseasssnesetesarsnnsee 2. Build Feature Vector |
’ 3. Make Prediction -=--=f=-reemmmesssmesssoeeseeaee Model ‘
4. LogRiedition ol s Server m
Feature

Monitor
Store

5 5 ~
) o & | . ,Spc’flgZ :
R Streaming
Q :
we MySQL Cluster

Figure 66. Model monitoring and logging architecture

In the previous Training stage of the DL pipeline, the model was exported by using the
serving module of the hops-util-py library. The model is persisted under the dataset Models
and the name chosen for this demo was ship_iceberg_classifier. Figure 67 demonstrates
how the model serving instance for ship_iceberg_classifier is created. The fields users can
set are:

e Model: The directory where the versions of the model are stored. The directory
structure respects the TensorFlow serving directory convention.

Model Version: Which version of the model to be served.

Request batching: Whether to batch inference requests.

Instances: Number of model serving instances to be spawned in Kubernetes.

Kafka topic: Whether to create a new Kafka topic to store the inference requests.
Kafka Num Partitions: Number of topic partitions.

Kafka replication factor: The replication factor for each topic.

Platform Software Architecture - Version Il, D1.6

EXTREME
FARTH H2020-825258

5% HOPSWORKS tep

ExtremeEarth ¢

(0}

@ TensorFlow O sci-kitLearn (SkLearn)

o
oo

Model @ [Projects/ExtremeEarthy/Models/ship_iceberg_classifier
ServingName ShiplcebergClassifier
Model Version u

#instances .

v Advanced

Request Batching ()
Kafka Topic
Kafka Num Partitions N

Kafka Replication Factor 1

3
£
&
=
4
=
&
L]

Update Serving

)

Name Type Path Version Created v Status Actions

ShiplcebergClassifier TENSORFLOW [Projects/ExtremeEarth//Models/ship_iceberg_classifier 1 May 10,2021 3:14:40 PM Running. Bl &

Figure 67. Model serving create Ul

Figure 68 shows the main Model Serving dashboard after the serving instance has started.
By clicking the “Show Detailed Information” button, users can view the endpoints where
inference requests are being served from.

Value

ShiplcebergClassifer

ShiplcebergClassifier-infé422

Figure 68. Model serving details

An important aspect of making a model serving production-ready, is to be able to collect logs
in real-time and make them easily accessible to users. Hopsworks uses the ELK stack to
achieve that, as it collects logs using Filebeat, persists them in Elasticsearch, and visualizes
them with Kibana. Figure 69 shows the logs of ship_iceberg_classifier TensorFlow serving
instances.

Platform Software Architecture - Version Il, D1.6 69

SN

(o)
EXTREME

FARTH H2020-825258

]
Jupyter =

"

8

BN B (O

B

aa

Figure 69. Model serving logs in Kibana

Since the model serving instance is running, users can now start submitting inference
requests Figure 70 demonstrates how the serving.make_inference_request() function is
used to submit the requests to the serving instance. Implementation of the serving module
is available at [22]. In this demo, 10 images from the TFRecord dataset are read and then
sent for inference. The result prints the prediction for each image and the label.

Platform Software Architecture - Version Il, D1.6

SN

(o)
EXTREME

FARTH H2020-825258

%local
def do inference():
with tf.Session() as sess:
dataset = get tf dataset()
dataset iter = dataset.make one shot iterator()
next element = dataset iter.get next()
for i in range(10):
X,y = sess.run(next element)
request data={}
request_data['instances'] = [x.tolist()]
response = serving.make inference request("icebergmodel"”, data=request data, verb= ":predict")
print("prediction: {}, is iceberg: {}".format(response['predictions'][0][0], y[0]))

%local
do_inference()

prediction: 0.457645357, is iceberg: 0.0
prediction: 0.457955331, is iceberg: 0.0
prediction: 0.469079971, is iceberg: 0.0
prediction: 0.458596766, is iceberg: 1.0
prediction: 0.458393067, is iceberg: 1.0
prediction: 0.459837317, is_iceberg: 1.0
prediction: 0.456256419, is iceberg: 0.0
prediction: 0.457359701, is iceberg: 0.0
prediction: 0.457865953, is iceberg: 0.0
prediction: 0.458710402, is iceberg: 0.0

Figure 70. Submitting inference requests with the Hopsworks Python client APIs

In this demo, 10 inference requests were submitted. In another Python program from an
IPython notebook, the monitoring job is started. The first step is to connect to the
ShiplcebergClassifier-inf4422 Kafka topic that stores the inference requests and their
metadata. Users can also manage the topic from the Kafka service menu in Hopsworks Ul, as
depicted in Figure 71.

2N Hopsworks K tep

ExtremeEarth §¢

=

=

OD

° New Topic #
Feature Store = Topic Name Schema Version AcL Share Advanced Remove
T £ ShiplcebergClassifier-inf4422 inferenceschema | 2 [+ | B
Models g§

Project UserEmail Permission Operation Host Role Remove Edit

Model Serving -

e ExtremeEarth serving@hopsworks.se allow B
Airf R
s Dl oo danzeweknse allow B o
Data Sets = ExtremeEarth sinash@kth.se allow B
Settings Py theo@! m allow B8 B
Pyth
G ? Partition id Partition leader Partition replicas Insync replicas

Members n 0 192.168.2.4 ['192.168.2.4"] ['192.168.2.4"]

Cluster Utilization: 2%

Figure 71. Model inference logging Kafka topic details

Platform Software Architecture - Version Il, D1.6

Ta\

0.
EXTREME

FARTH H2020-825258

In the notebook, the Kafka client (consumer) is instantiated and subscribes to the inference
topic as shown in Figure 72.

consumer = Consumer(config)
def print assignment(consumer, partitions):

Callback called when a Kafka consumer is assigned to a partition

print('Assignment:', partitions)
topics = [TOPIC NAME]
consumer.subscribe(topics, on assign=print assignment)

Figure 72. Submitting inference requests with the Hopsworks Python client APIs

For brevity, in this example one message is consumed from the topic, that is one inference
request, and part of its data is logged, as shown in Figure 73. It is trivial to change the
number of inference requests to be logged periodically by modifying the logging loop.

message = {}
for i in range(0, 1):
msg = consumer.poll(timeout=5.0)
if msg is not None:
message = msg
print('Consumed Message: {} from topic: {}, partition: {}, offset: {}, timestamp: {}'.format(msg.value(), msg.topic(), msg.partition(), msg.offset(), msg.t:
else:
print("Topic empty, timeout when trying to consume message, try to produce messages to the topic and then re-consume")
»
Consumed Message: b'\x02\x18icebergmodel\x04\xb0\xal\xc9\xb2\xd6 [\x90\x03\xed\xe6+{"instances": [[[[-32.045310974121094, -25.196855545043945, -28.621084213256836],
[-30.461740493774414, -26.93991470336914, -28.70082664489746], [-28.332691192626953, -27.608448028564453, -27.970569610595703], [-32.04547882080078, -29.9922332763
67188, -31.018856048583984], [-28.332805633544922, -26.319400787353516, -27.32610321044922], [-28.332805633544922, -26.319400787353516, -27.32610321044922], [-25.7
40184783935547, -23.31174087524414, -24.525962829589844], [-23.746183395385742, -22.312318801879883, -23.029251098632812], [-22.12557601928711, -21.94270896911621,
-22.034143447875977], [-20.299030303955078, -25.197311401367188, -22.748170852661133], [-23.971975326538086, -28.33308982849121, -26.15253257751465], [-29.99257659
9121094, -26.02522087097168, -28.008899688720703], [-32.645145416259766, -27.963478088378906, -30.304311752319336], [-30.462310791015625, -29.992691040039062, -30.
227500915527344], [-29.992748260498047, -28.7193660736084, -29.356056213378906], [-26.319915771484375, -33.9842529296875, -30.152084350585938], [-26.31991577148437
5, -33.9842529296875, -30.152084350585938], [-27.609134674072266, -29.547332763671875, -28.57823371887207], [-30.462539672851562, -30.959012985229492, -30.71077728

Figure 73. Inference request data fetched from the monitoring system

Platform Software Architecture - Version Il, D1.6 72

O.
EXTREME

FARTH H2020-825258
11. Orchestration
All previous sections have demonstrated how to apply transformations and processing steps
to data via a Deep Learning pipeline, in order to go from raw data into an ML model. So far
all steps had to be manually executed in a proper order to produce the output model.
However, once that process is established it can then be quite repetitive in nature. That
means it decreases the efficiency of data scientists whose primary focus is on improving the
accuracy of the models by applying novel techniques and algorithms. Such a repetitive
process then should be automated and managed easily with the help of software tools.

One such tool is Apache Airflow (Airflow) [2], a platform to programmatically schedule and
monitor workflows. Airflow is built on top of three core concepts: DAGs, Operators, and
Tasks [10]. A Directed Acyclic Graph (DAG) is a model of the tasks you wish to run defined in
Python. The model is organized in such a way that clearly represents the dependencies
among the tasks.

A DAG constructs a model of the workflow and the tasks that should run. So far a task is
quite general, operators define what a task should actually execute. Operators are usually (it
is recommended) atomic in the sense that they can stand on their own without sharing state
with others. Tasks are instantiated operators at a specific point in time. Since workflows can
be scheduled to run repeatedly, operators’ results may vary. So tasks are also defined by the
time which ran.

To this end, Hopsworks has extended Airflow in three ways:

1. Airflow has been integrated as a multi-tenant service accessible from a Hopsworks
project. Members of a project are allowed to access only the Airflow workflows
(DAGSs) that are uploaded in the workflows directory of their project.

2. By providing Hopsworks specific Airflow operators that facilitate the development of
creating workflows that implement DL pipelines. Development of Airflow workflows
in Hopsworks typically involves launching Jupyter notebooks or PySpark programs.

3. By providing an intuitive Ul as part of the Airflow service in a Hopsworks project, that
enables users to define the order of task execution by selecting the jobs and the
operators/sensors from.

Implementation of these operators and sensors is available in the logicalclocks GitHub
repository [24] in the form of source code. The notebooks presented so far can be chained
together in a series of tasks that can run in sequence or in parallel. Users define the order of

task execution and how tasks depend on each other. This definition in vanilla Airflow is
implemented by a Python program that users need to develop. The program uses Airflow
Python libraries to create the DAG which can then be administered and monitored from the
Airflow Ul. A new Ul, the Airflow DAG composer, has been developed in Hopsworks that
enables users to create workflows by selecting Hopsworks Airflow Operators and Sensors.
Users need to first create a job with the selected file to run being a notebook. The python

Platform Software Architecture - Version Il, D1.6

SN
(o)
EXTREME
FARTH H2020-825258

program iceberg_pipeline.py [23] defines the DAG and is auto-generated from the DAG
composer. Pipelines can be scheduled and the first step of the DAG composer is to provide a
name for the DAG and an optional schedule. If no schedule is defined, the DAG needs to be
started manually from the Airflow Ul. In addition, an optional parameter for an API key is
provided for DAGs that need to be triggered from a remote instance and not from within
Hopsworks. Figure 74 shows this first step of the DAG creation wizard.

Workflow properties

Name @ iceberg_pipeline
Scheduler interval @ @once
¥ Advanced
APlkey ©

Figure 74. New Airflow workflow wizard

Figure 75 shows how users can easily set the HopsworksOperator properties, which are
which job to run and after which task this job should run, hence creating a dependency in
the graph (DAG).

Operator properties '

Type @ HopsworksJobSuccessSensor

Jobname @ | Stage2_FeatureStore A

Runs after @ launch_Stagel_Preprocessing
wait_Stagel_Preprocessing
launch_Stage2_FeatureStore

Figure 75. New Airflow workflow wizard - Operators

Platform Software Architecture - Version Il, D1.6 74

SN

(o)

EXTREME
FARTH

H2020-825258

Figure 76 shows the available operators and sensors and the ones that the user has selected.
By clicking the “Generate Airflow DAG” button, the python file of the DAG is generated and
persisted in Hopsworks.

ExtremeEarth
Jupyter
Jobs
Kafka
Model Serving
Experiments

Airflow

4
t
N

-y
4

v

Feature Store

Data Sets

v

Settings

Python

LA -]

Members

Metadata Designer (&

Cluster

Workflow
name:

Schedule @once
interval:

iceberg_pipeline

HopsworksLaunchOperator

Operator to launch a Job in Hopsworks. Job should already be
defined in Jobs Ul and job name in operator must match the job
name in Jobs Ul

HopsworksFeatureValidationResult

When this task runs, it will fetch the Data Validation result for a
specific feature group. It assumes that the data validation Job
has run before and it has finished. The task will fail if the
validation result is not successful.

HopsworksJobSuccessSensor

Operator which waits for the completion of a specific job. Job
must be defined in Jobs Ul and job name in operator must
match the job name in Jobs UL The task will fail too i the job
which is waiting for fails.

B S S R 1=

E DAG operators)

e Total: 3

[E) taunch_stage1_Preprocessing
[E) wait_stage1_Preprocessing Typ

[E) taunch_Stage2_FeatureStore Typ

Generate Airflow DAG

Figure 76. Airflow service Ul in Hopsworks

Figure 77 shows the Tree View of the workflow from the Airflow Ul. The latter provides a
plethora of different types of views and tools to manage the lifecycle of a workflow.

[on] iceberg_pipeline
#* Graph View ol Task Duration b Task Tries A Landing Times = Gantt iZ Detalils 4 Code 2 Refresh ® Delete

Base date: 2019-11-28 01:02:15

Number of runs: 25 v Go

(O HopsworksJobSuccessSensor (1) HopsworksLaunchOperator

Olpac)

QO wait_Stages_ModelMonitoring
O launch_Stages_ModelMonitoring
QO wait_Stage4_ModelServing
Qlaunch_Stage4_ModelServing
QO wait_Stage3_Training
QO Jaunch_stage3_Training

12. Hopsworks TEPs Integration

QO wait_Stage2_FeatureStore
QO Jaunch_stage2_FeatureStore
Qwait_Stage1_Preprocessing

ENDNDNEONEDE00-%

QO launch_stage1_Preprocessing

schedule: @once

M success [running [l failed [skipped [rescheduled [Jretry [l queued [Jno status

Figure 77. Airflow tree-view tasks

This section has been expanded and moved to deliverable “Platform software architecture -

version II”.

Platform Software Architecture - Version Il, D1.6

75

(9)!
EXTREME

FARTH H2020-825258
13. References
[1] “Say Hello to Asynchronous Search for PySpark”
https://towardsdatascience.com/say-hello-to-asynchronous-search-for-pyspark-64c692a055
95 [Online; accessed 1-June-2021]
[2] “Apache Airflow” https://airflow.apache.org/ [Online; accessed 15-November-2019]
[3] “Creodias data access interfaces” https://creodias.eu/data-access-interfaces. [Online;
accessed 2-April-2019]
[4] “S3/Swift REST APl Comparison Matrix”
https://docs.openstack.org/swift/latest/s3_compat.html [Online; accessed
22-November-2019]
[5] “PythonResource.java”
https://github.com/logicalclocks/hopsworks/blob/v1.0.0/hopsworks-api/src/main/javal/io/hops/
hopsworks/api/python/PythonResource.java [Online; accessed 22-November-2019]
[6] “Hopsworks REST API - Swagger”
https://app.swaggerhub.com/apis-docs/logicalclocks/hopsworks-api/2.2.0 [Online; accessed
5-May-2021]
[7] “Boto3 Documentation”
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html [Online; accessed
22-November-2019]
[8] “Spark Integration with Cloud Infrastructures”
https://spark.apache.org/docs/2.4.3/cloud-integration.html [Online; accessed
22-November-2019]
[9] “Hopsworks UploadService.java”
https://github.com/logicalclocks/hopsworks/blob/v1.0.0/hopsworks-api/src/
main/java/io/hops/hopsworks/api/util/UploadService.java#L322 [Online; accessed
23-November-2019]
[10] “Hopsworks read the docs Airflow” https://hopsworks.readthedocs.io/
en/latest/user_guide/hopsworks/airflow.html. [Online; accessed 23-November-2019]
[11] “SPIP: Accelerator-aware task scheduling for Spark”
https://issues.apache.org/jira/browse/SPARK-24615 [Online; accessed 27-November-2019]
[12] “Logical Clocks Spark GitHub repository”
https://github.com/logicalclocks/spark/tree/branch-2.4 [Online; accessed 27-November-2019]
[13] “Feature store”
https://hopsworks.readthedocs.io/en/1.0/user_guide/hopsworks/featurestore.html [Online;
accessed 27-November-2019]
[14] “Apache Hive” https://hive.apache.org/ [Online; accessed 27-November-2019]
[15] “MySQL Cluster” https://www.mysql.com/products/cluster/ [Online; accessed
27-November-2019]
[16] “Pandas” https://pandas.pydata.org/ [Online; accessed 27-November-2019]
[17] “pandas_helper.py”
https://github.com/logicalclocks/hops-util-py/blob/7ae489ce918732f3dd23
608e8d268a3686664cab/hops/pandas_helper.py [Online; accessed 27-November-2019]
[18] “End-to-end D1.8 demo pipeline”

Platform Software Architecture - Version Il, D1.6

https://towardsdatascience.com/say-hello-to-asynchronous-search-for-pyspark-64c692a05595
https://towardsdatascience.com/say-hello-to-asynchronous-search-for-pyspark-64c692a05595
https://app.swaggerhub.com/apis-docs/logicalclocks/hopsworks-api/2.2.0
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

S\
(9)
EXTREME
EARTH H2020-825258

https://github.com/ExtremeEarth-Project/eo-ml-examples/tree/main/D1.8 [Online; accessed
27-May-2021]

[19] “Maggy” https://github.com/logicalclocks/maggy [Online; accessed 27-November-2019]
[20] “Apache Kafka” https://kafka.apache.org/ [Online; accessed 27-November-2019]

[21] “Apache Avro” https://avro.apache.org/docs/1.8.1/spec.html [Online; accessed
27-November-2019]

[22] “hops-util-py serving”
https://github.com/logicalclocks/hops-util-py/blob/v1.0.0.0/hops/serving.py [Online; accessed
27-November-2019]

[23] “iceberg_pipeline.py”
https://github.com/ExtremeEarth-Project/eo-ml-examples/blob/main/D1.8/iceberg_pipeline.py
[Online; accessed 27-November-2019]

[24] “Hopsworks Airflow operators and sensors”
https://github.com/logicalclocks/airflow-chef/tree/1.0/files/default/hopsworks_plugin [Online;
accessed 30-November-2019]

[25] “Deequ” https://github.com/awslabs/deequ [Online; accessed 30-November-2019]

[26] Sheikholeslami, Sina, et al. "AutoAblation: Automated Parallel Ablation Studies for Deep
Learning." Proceedings of the 1st Workshop on Machine Learning and Systems. 2021.

[27] “Model Training notebook”
https://github.com/ExtremeEarth-Project/eo-ml-examples/blob/main/D1.8/%5Bdone %5D Step
3a_Model_Training.ipynb [Online;accessed 21-May-2021]

[28] “Chef” hitps://www.chef.io/ [Online; accessed 1-December-2019]

[29] Apache Beam https://beam.apache.org/ [Online; accessed 1-December-2019]

[30] “Apache Flink” https://flink.apache.org/ [Online; accessed 1-December-2019]

[31] “Apache Beam Portability Framework”

https://beam.apache.org/roadmap/portability/ [Online; accessed 1-December-2019]

[32] “Python Streaming Pipelines on Flink - Beam Meetup at Lyft 2019”
https://www.slideshare.net/ThomasWeise/python-streaming-pipelines-on-flink-beam-meetup-
at-lyft-2019 [Online; accessed 1-December-2019]

[33] Ismail, Mahmoud, et al. "ePipe: Near Real-Time Polyglot Persistence

of HopsFS Metadata." 19th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, CCGRID 2019, Larnaca, Cyprus, May 14-May17, 2019. 2019.
[34] “Iceberg demo distributed training”
https://github.com/ExtremeEarth-Project/eo-ml-examples/blob/main/D1.8/%5Bdone%5DStep

3c_Model_Training_Distributed.ipynb [Online;accessed 21-May-2021]
[35] “ELK stack” https://www.elastic.co/what-is/elk-stack [Online;

accessed 1-December-2019]

[36] “Karamel” http://www.karamel.io/ [Online; accessed 8-December-2019]

[37] “Statoil/C-CORE Iceberg Classifier Challenge”
https://www.kaggle.com/c/statoil-iceberg-classifier-challenge/data [Online;accessed
8-December-2019]

[38] “CREODIAS” https://creodias.eu/ [Online; accessed 10-December-2019]

[39] “OpenStack” https://www.openstack.org/ [Online; accessed 10-December-2019]

Platform Software Architecture - Version Il, D1.6

https://github.com/ExtremeEarth-Project/eo-ml-examples/tree/main/D1.8
https://github.com/logicalclocks/hops-util-py/blob/v1.0.0.0/hops/serving.py
https://github.com/ExtremeEarth-Project/eo-ml-examples/blob/main/D1.8/iceberg_pipeline.py
https://github.com/ExtremeEarth-Project/eo-ml-examples/blob/main/D1.8/%5Bdone%5DStep3a_Model_Training.ipynb
https://github.com/ExtremeEarth-Project/eo-ml-examples/blob/main/D1.8/%5Bdone%5DStep3a_Model_Training.ipynb
https://github.com/ExtremeEarth-Project/eo-ml-examples/blob/main/D1.8/%5Bdone%5DStep3c_Model_Training_Distributed.ipynb
https://github.com/ExtremeEarth-Project/eo-ml-examples/blob/main/D1.8/%5Bdone%5DStep3c_Model_Training_Distributed.ipynb

(9)!
EXTREME

FARTH H2020-825258
[40] Meister, Moritz, et al. "Maggy: Scalable Asynchronous Parallel Hyperparameter Search."
Proceedings of the 1st Workshop on Distributed Machine Learning. 2020.
[41] Apache Spark, Logical Clocks fork.
https://github.com/logicalclocks/spark [Online; accessed 23-December-2019]
[42] Prometheus metrics monitoring service.
https://github.com/prometheus/prometheus [Online; accessed 5-May-2021]
[43] Grafana monitoring framework. https://grafana.com/ [Online; accessed
23-December-2019]
[44] Jupyter notebook. https://jupyter.org [Online; accessed 5-May-2021]
[45] Anaconda Python distribution.
https://www.anaconda.com/distribution/ [Online; accessed 23-December-2019]
[46] Pandas. https://pandas.pydata.org/ [Online; accessed 23-December-2019]
[47] TensorFlow. https://www.tensorflow.org/ [Online; accessed 23-December-2019]
[48] Keras https://keras.io/. [Online; accessed 23-December-2019]
[49] Chicago taxi rides dataset.
https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew [Online; accessed
23-December-2019]
[50] TensorFlow Extended (TFX). https://www.tensorflow.org/tfx
[51] Scikit-learn. https://scikit-learn.org/stable/ [Online; accessed 23-December-2019]
[52] OpenStack. https://www.openstack.org/ [Online; accessed 23- December-2019]
[53] How we secure your data with Hopsworks
https://www.logicalclocks.com/blog/how-we-secure-your-data-with-hopsworks [Online;
accessed 5-May-2021]
[54] nbconvert: convert Notebooks to other formats
https://nbconvert.readthedocs.io/en/latest/ [Online; accessed 5-May-2021]
[55] Feature Store documentation

https://docs.hopsworks.ai/2.3.0-SNAPSHOT/generated/feature_validation/ [Online; accessed

6-May-2021]
[56] ESA SNAP Toolbox https://step.esa.int/main/toolboxes/snap/ [Online; accessed
6-May-2021]

[57] Kubernetes jobs https://kubernetes.io/docs/concepts/workloads/controllers/job/ [Online;
accessed 6-May-2021]

[58] esa-snap docker image https://hub.docker.com/r/atavares/esa-snap [Online;accessed
7-May-2021]

[59] GDAL https://gdal.org/ [Online; accessed 7-May-2021]

[60] GDAL Python package https://pypi.org/project/ GDAL/ [Online; accessed 7-May-2021]
[61] Hopsworks Feature Store tags

https://docs.hopsworks.ai/latest/generated/tags/#tag-schemas [Online; accessed
11-May-2021]

Platform Software Architecture - Version Il, D1.6

https://github.com/prometheus/prometheus
https://jupyter.org
https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
https://www.tensorflow.org/tfx
https://www.logicalclocks.com/blog/how-we-secure-your-data-with-hopsworks
https://nbconvert.readthedocs.io/en/latest/
https://docs.hopsworks.ai/2.3.0-SNAPSHOT/generated/feature_validation/
https://step.esa.int/main/toolboxes/snap/
https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://hub.docker.com/r/atavares/esa-snap
https://gdal.org/
https://pypi.org/project/GDAL/
https://docs.hopsworks.ai/latest/generated/tags/#tag-schemas

