
ExtremeEarth

H2020 - 825258

Deliverable

D1.8

Hops data platform support for EO data -version II

Responsible Partner: LC

Theofilos Kakantousis, Jim Dowling, Vladimir Vlassov, Sina Sheikholeslami, Tianze Wang

Desta Haileselassie Hagos

Status: Final

Scheduled Delivery Date: 30/06/2021

Ref. Ares(2021)4228984 - 29/06/2021

H2020-825258

Executive Summary

The ExtremeEarth project aims at advancing the state of the art in Big Data Analytics for

Earth Observation data with Copernicus data. New techniques in the areas of Remote

Sensing and Artificial Intelligence with an emphasis on Deep Learning will be developed and

used during the course of this project. These techniques will be demonstrated in two use

cases, namely, Food Security and Polar Ice. One of the main factors that differentiate this

project in comparison to other Earth Analytics ones, is the use of Hops data platform

(Hopsworks), a horizontally scalable full-stack Big Data and Artificial Intelligence (AI)

platform. Hopsworks provides first-class support for both Data Analytics at scale and Data

Science at scale. In particular, Hopsworks supports the development of Deep Learning

applications in notebooks and the operation of workflows to support those applications,

including data processing at scale, model training at scale, and model deployment. In this

deliverable, we describe and demonstrate the services and features of Hopsworks that

provide users with the means of building scalable Deep Learning pipelines for Earth

Observation (EO) Data, as well as support for discovery and search for EO metadata. Users of

the platform typically are data engineers working with data collection and transformation,

and data scientists working with training samples and model training. This deliverable serves

as a demonstrator and walkthrough of the stages of building a production level model that

includes Data Ingestion, Data Preparation, Feature Extraction, Model training, Model

Serving, and Monitoring. We provide a practical example that demonstrates the

aforementioned stages with real-world EO data and provides source code that implements

the functionality in the platform. Work contributed to this deliverable will be used by WP2

and WP3.

Updates in D1.8 compared to D1.4

This deliverable builds on D1.4 which is the first version of this deliverable. It delivers the

previous content with updates and additions across all sections. In addition, the

demonstrator has been updated and is available online [18]. Notable changes compared to

the previous version of this deliverable are the following:

1. Section 3.3 Python environment: New section that demonstrates the Python

environment support in Hopsworks.

2. Section 4 Metadata support for EO and Big Data: Updated section to include

implementation details of how Hopsworks has been extended with metadata

support for EO data. New sections 4.1 and 4.2 demonstrate how to use metadata to

perform free-text search and tagging.

3. Section 5 EO data pre-processing: Demonstrates new tools Hopsworks has been

extended with for EO data pre-processing.

4. Section 7.2 Feature validation: Updated section with new feature validation

framework.

Platform Software Architecture - Version II, D1.6 2

H2020-825258

5. Section 12 Hopsworks TEPs Integration: Content was moved and expanded in

deliverable D1.6 Platform Software Architecture version II.

6. Demonstrator code is now available at

https://github.com/ExtremeEarth-Project/eo-ml-examples

Platform Software Architecture - Version II, D1.6 3

https://github.com/ExtremeEarth-Project/eo-ml-examples

H2020-825258

Document Information

Contract Number H2020 - 825258 Acronym ExtremeEarth

Full title From Copernicus Big Data to Extreme Earth Analytics

Project URL http://earthanalytics.eu/

EU Project officer Riku Leppänen

Deliverable Number D1.8 Name Hops data platform support for
EO data version II

Task Number T1.4 Name EO Data Pipelines

Work package Number WP1

Date of delivery Contractual M30 Actual M30

Status draft☐ fina l☒

Nature Prototype☒ Report☒

Distribution Type Public☒ Restricted☐ Consortium☐

Responsible Partner LC

QA Partner KTH, UoA, NCSR-D

Contact Person Theofilos Kakantousis

Email theo@logicalclocks
.com

Phone Fax

Platform Software Architecture - Version II, D1.6 4

H2020-825258

Project Information
This document is part of a research project funded by the IST Programme of the Commission

of the European Communities as project number H2020-825258. The beneficiaries in this

project are the following:

Partner Acronym Contact

National and Kapodistrian University of
Athens

Department of Informatics and
Telecommunications (Coordinator)

UoA Prof. Manolis Koubarakis

National and Kapodistrian University of Athens

Dept. of Informatics and Telecommunications

Panepistimiopolis, Ilissia, GR-15784

Athens, Greece

Email: koubarak@di.uoa.gr

Tel: +30 210 7275213, Fax: +30 210 7275214

VISTA Geowissenschaftliche
Fernerkundung GmbH

VISTA

Heike Bach

Email: bach@vista-geo.de

The Arctic University of Norway

Department of Physics and Technology

UiT

Torbjørn Eltoft

Email: torbjorn.eltoft@uit.no

University of Trento

Department of Information Engineering
and Computer Science

UNITN

Lorenzo Bruzzone

Email: lorenzo.bruzzone@unitn.it

Royal Institute of Technology

KTH

Vladimir Vlassov

Email: vladv@kth.se

Platform Software Architecture - Version II, D1.6 5

mailto:koubarak@di.uoa.gr
mailto:bach@vista-geo.de
mailto:torbjorn.eltoft@uit.no
mailto:lorenzo.bruzzone@unitn.it
mailto:vladv@kth.se

H2020-825258

National Center for Scientific Research -
Demokritos

NCSR-D

Vangelis Karkaletsis

Email: vangelis@iit.demokritos.gr

Deutsches Zentrum für Luft-und
Raumfahrt e. V.

DLR

Corneliu Octavian Dumitru

Email: corneliu.dumitru@dlr.de

Polar View Earth Observation Ltd.

PolarView

David Arthurs

Email: david.arthurs@polarview.org

METEOROLOGISK INSTITUTT

METNO

Nick Hughes

Email: nick.hughes@met.no

Logical Clocks AB

LC

Jim Dowling

Email: jim@logicalclocks.com

United Kingdom Research and Innovation
– British Antarctic Survey

UKRI-BAS

Andrew Fleming

Email: ahf@bas.ac.uk

Platform Software Architecture - Version II, D1.6 6

mailto:vangelis@iit.demokritos.gr
mailto:corneliu.dumitru@dlr.de
mailto:david.arthurs@polarview.org
mailto:nick.hughes@met.no
http://jim@logicalclocks.com
mailto:ahf@bas.ac.uk

H2020-825258

Table of Contents

1. EO Data Deep Learning Pipelines Architecture 9

2. Parallel Data Processing with Apache Spark 12

3. Development Environment 18

3.1 Jupyter notebooks on Kubernetes 18

3.2 Jupyter notebooks as Jobs 19

3.3 Python environment 20

4. Metadata support for EO and Big Data 22

4.1 Search example 24

4.2 Tagging example 25

5. Data Ingestion 28

5.1. Demonstrator Dataset 28

5.2. Accessing EO Data from Hopsworks 31

6. EO data pre-processing 33

6.1 EO data pre-processing with Python 33

6.2 EO data pre-processing with Docker and Kubernetes 34

7. Feature Engineering and Data Validation 38

7.1 Feature Store 38

7.2 Feature Validation 43

8. Training 48

8.1 Experiments 48

8.2 Parallel Experiments 52

8.3 Distributed Training 55

8.4 Hyperparameter Tuning with Maggy 56

8.5 Ablation studies 61

9. Model Analysis 64

10. Model Serving & Monitoring 66

11. Orchestration 73

12. Hopsworks TEPs Integration 75

Platform Software Architecture - Version II, D1.6 7

H2020-825258

13. References 76

Platform Software Architecture - Version II, D1.6 8

H2020-825258

1. EO Data Deep Learning Pipelines Architecture

A Data Science application, particularly in the domain of Big Data, typically consists of a set

of stages that form a data pipeline. This data pipeline is responsible for transforming data

and serving it as knowledge by using data engineering processes and by applying ML

algorithms and Deep Learning (DL) techniques. These stages typically are:

● Data Ingestion

● Data Preparation & Validation

● Feature Extraction

● Build & validate the model (training)

● Model Serving/Monitoring

The first two steps, data ingestion, and preparation can also be described as Data Pipelines.

Figure 1 illustrates the Deep Learning pipeline stages along with the stakeholders of these

stages. Feature Extraction is facilitated by the Feature Store service, presented in section 7.

Figure 1. Machine Learning Pipeline [1]
Once data goes through all the stages and the model of the ML pipeline is served, the stages

are executed once again in order to consider new data that has arrived in the meantime and

to further fine-tune the pipeline stages which will lead to more accurate models and results.

Therefore, a data science life cycle is formed, which continuously iterates the above ML

pipeline.

As a result, data scientists are faced with the highly complex task of developing DL

workflows that utilize each stage of the ML pipeline. The complexity of such pipelines can

Platform Software Architecture - Version II, D1.6 9

H2020-825258

grow as the input data increases in volume, which in the case of EO data means that a

robust and flexible architecture needs to be in place to assist data engineers and scientists to

develop these pipelines. Figure 2 depicts the overall architecture and lifecycle of a DL

pipeline along with the technologies used to implement it and demonstrated in the rest of

this document.

Figure 2. Hopsworks ML Lifecycle

The stages of data collection (ingestion), pre-processing, and management of a service to

store curated feature data and compute features can be considered to be a part of the Data

Engineering lifecycle. The Feature Store is the service used in this DL pipeline to manage

curated feature data. The second step of the pipeline, the actual ML training and model

development, starts by fetching feature data in appropriate file formats to be used as input

for training, with the file format depending on the ML framework that is used. This step can

be considered as the Data Science lifecycle, where new feature data is fetched and new

models are iteratively developed and pushed to production (serving).

One of the main goals of a DL pipeline is to continuously improve the output models, by

using some user-defined metrics. To detect when the DL pipeline should be triggered in

order to update a DL model served in production, there needs to be a mechanism in place

that logs all inference requests and monitors how the model is performing over time. Model

serving and monitoring in Hopsworks provide these capabilities to developers of pipelines

and are further demonstrated in section Model Serving & Monitoring.

Platform Software Architecture - Version II, D1.6 10

H2020-825258

Figure 3 depicts the Hopsworks services stack. HopsFS and RonDB (NDB/MySQL Cluster)

provide horizontally scalable data and metadata storage. Apache Hadoop YARN and

Kubernetes are the resource management frameworks on the upper layer. These provide

resources to the distributed processing framework in Hopsworks, Apache Spark, and to

Hopsworks itself to provide EO data pre-processing with arbitrary programming languages

functionality and also running Python jobs and notebooks. Auxiliary services are part of this

layer, providing logging and metrics monitoring. The next layer comprises Hopsworks itself,

the webapp with the REST API that provides client applications and users connectivity to the

entire Hopsworks cluster.

Figure 3. Hopsworks services stack

Running a DL pipeline can be a repetitive task, as most (if not all) stages need to run when

new data is ingested into the system. Orchestrating the order of stage execution, monitoring

progress, and putting a retry mechanism in place in case of failures, is an important part of

making an EO data pipeline production ready. Hopsworks integrates Apache Airflow[2] as an

orchestration engine and section 11 describes how this integration has been implemented

and provided to users of the platform. The rest of this document demonstrates each stage of

the Deep Learning pipeline implemented in Hopsworks, with a dataset based on a real-world

dataset from the Polar use case domain.

Platform Software Architecture - Version II, D1.6 11

H2020-825258

2. Parallel Data Processing with Apache Spark
Integration Guidelines section of deliverable D1.5 Hops data platform integration guide for

applications - version II describes in detail how the Jobs and Notebooks services in

Hopsworks can be used for data processing and deep learning. This section describes how

the aforementioned services utilize Apache Spark in Hopsworks and how the latter is

integrated into Hopsworks to provide horizontally scalable data processing and distribution

of machine learning processes in a Hopsworks cluster.

Apache Spark (Spark) is a framework for large-scale distributed processing of data. Spark

provides data engineers and data scientists with the tools to process data at scale and offers

powerful APIs for developing data pipelines. Adding support for developing and running

Apache Spark applications at scale with Hopsworks is also a prerequisite for the

development of part of WP3, in particular, deliverables related to “Software for querying

and extreme analytics for big linked geospatial data”.

Spark can be deployed on top of various resource management services, such as Apache

YARN (YARN), Mesos, and Kubernetes. Hopsworks utilizes the flavor of YARN that is

developed within the Hops project as the resource management service for deploying

distributed applications on a cluster of servers. YARN in Hops supports scheduling

applications with resource constraints, which are CPU, main memory, and Graphics

Processing Unit (GPU). Therefore, Spark in Hopsworks is deployed on top of YARN, and users

developing DL pipelines can easily, from within the Hopsworks user interface (UI), request

these three resources to be allocated to their job or notebook. That is particularly important

for allocating GPUs when the Spark program needs to have access to GPU compute power.

During the ExtremeEarth project Spark versions 2.x, in particular version 2.4.3, were used for

the majority of the duration of the project, which do not support scheduling with GPUs [11],

unlike recently released Spark 3.x versions that added such support. Therefore, Spark was

extended within the scope of the ExtremeEarth project to provide GPU-based resource

allocation and scheduling within the Hopsworks platform. In Hopsworks, a new parameter

“spark.executor.gpus” has been added to Spark to indicate the number of GPUs to be

requested for each Spark executor. It is then left up to the scheduler of YARN to allocate the

resources based on scheduler policies and current cluster utilization. Implementation details

are available online at the Logical Clocks GitHub repository [41]. Figures 4 and 5 provide a

high-level view of the architecture behind GPU and Deep Learning framework support

within PySpark.

Platform Software Architecture - Version II, D1.6 12

H2020-825258

Figure 4. Resource management and GPU allocation in Hopsworks

Platform Software Architecture - Version II, D1.6 13

H2020-825258

Figure 5. Spark Driver and Executors with GPUs and Deep Learning Frameworks

Hopsworks has been extended with an API that allows clients to easily submit Spark

applications on the cluster. Hopsworks sets up default Spark configuration parameters and in

addition, it provides a flexible way for users to provide additional ones with their Spark

application via the UI or the RESTful and client APIs for their application.

Endpoints for submitting Spark applications as jobs in Hopsworks can be found under the

jobs resource, which is a sub-resource of the top-level projects resource. To submit a new

job, a client would need to submit an HTTP request to the Hopsworks

/project/{projectId}/jobs/{name}/executions endpoint. An exhaustive list of all endpoints

related to the Jobs resource is available at SwaggerHub [6].

Figure 6 demonstrates how users can submit a Spark job via UI of the Hopsworks Jobs

service with dynamic executors. All configuration parameters are provided through the UI

and sent via HTTP to a RESTful jobs service endpoint in Hopsworks. The executable JAR file

“spark-examples.jar” has been uploaded into the TestJob dataset and program runtime input

arguments are set either with the “Default arguments” textbox or with the job arguments

Platform Software Architecture - Version II, D1.6 14

H2020-825258

popup textbox when the user runs the job. All metadata of jobs, such as Spark configuration,

duration, creator etc., are stored in the metadata layer of Hopsworks. This metadata layer is

backed by the in-memory horizontally scalable distributed database RonDB, an evolution of

MySQL Cluster (NDB). This database is used to store metadata of critical Hopswork services,

providing strongly consistent metadata across services in Hopsworks.

Figure 6. Submitting Spark Applications from the Jobs services

Furthermore, Hopsworks collects real-time logs produced by the Spark driver and executors,

by utilizing the ELK stack which comprises Elasticsearch, Logstash, Kibana, and Beats [35].

Filebeat, part of the Beats suite of data shippers, is installed on all cluster nodes that may

run either a driver on an executor and it monitors the directory where logs are output. Log

content is then transmitted over the network to Logstash which applies some business logic

by using Grok filters. The purpose of this business logic is to enrich the logs with metadata in

regards to which project particular logs belong to and then logs are sent to Elasticsearch for

indexing. Elasticsearch stores all logs of a project in one index. Kibana is provided via the

Jobs UI in Hopsworks as a tool to create rich visualizations of logs. Figure 7 shows the logs of

a Spark job in Hopsworks. All logging services are adapted to the project-based multi-tenant

model of Hopsworks, which means users can securely access logs produced by jobs and

notebooks within their projects. As a result, it is not possible to access logs of other projects,

preventing data leaks. To achieve that, logging services utilize the project-user TLS

certificates mechanism that is also used consistently across Hopsworks to ensure

authentication, authorization and encrypted communication [53].

Platform Software Architecture - Version II, D1.6 15

H2020-825258

Figure 7. Real-time Apache Spark logs in Hopsworks with the Jobs service

In addition, metrics that are reported from Spark are collected with Prometheus [42], an

open-source system and service monitoring system. It collects metrics from configured

targets at given intervals, evaluates rule expressions, displays the results, and can trigger

alerts when specific conditions are observed. Metrics in Hopsworks are visualized using

Grafana, an open-source analytics, and monitoring framework [43]. The latter can be

accessed via the Jobs UI in Hopsworks. The previous version of this deliverable, D1.4, used

InfluxDB instead of Prometheus for storing job and service metrics. The move to Prometheus

was prompted by the wider adoption of the Prometheus system and its more optimal

resource utilization as it was observed that InfluxDB was using too many compute resources

on the Hopsworks cluster. Further information regarding how logging and monitoring can be

accessed by users is provided in deliverable 1.1 under section Jobs. Figure 8 shows metrics

of Spark job run in Hopsworks, with 10 executors.

Again, similarly to the real-time logging architecture described above, access to metrics is

based on project-user authorization, meaning users can only access metrics of projects they

are members of. This metrics monitoring architecture is also used in Hopsworks to collect

logs of services at an administrative level. A Hopsworks user with the role HOPS_ADMIN, via

the “Admin UI”, can monitor utilization in real-time of critical services such as the distributed

file system HopsFS and the metadata layer (database).

Platform Software Architecture - Version II, D1.6 16

H2020-825258

Figure 8. Real-time Job (Spark) metrics monitoring with Prometheus and Grafana in
Hopsworks

Platform Software Architecture - Version II, D1.6 17

H2020-825258

3. Development Environment
Jupyter notebooks have become the lingua franca for data engineers and data scientists that

develop both data and deep learning pipelines [44]. They provide an interactive way of

writing code, getting and sharing results and code with other developers. Hopsworks

supports writing Python and Spark/PySpark programs with Jupyter and JupyterLab via the

Jupyter service which is accessible from the navigation bar from within a project in

Hopsworks. Users are presented with a set of configuration parameters with some of them

already set with default values.

To have a consistent way of working with Jupyter notebooks and jobs in Hopsworks, the

Jupyter configuration is common with the Jobs one. That means users can set a Spark

configuration to use when using the Jupyter server and that configuration is stored in the

Hopsworks database and made available in the Jobs service as well. This reduces user

friction, allowing users to reuse configurations across jobs and notebooks allowing for a

seamless development experience.

Figure 9 shows the default Jupyter dashboard page in Hopsworks for working with

Spark/PySpark notebooks.

Figure 9. Jupyter dashboard landing page

3.1 Jupyter notebooks on Kubernetes

Hopsworks has been extended to run Jupyter notebooks in Docker containers managed by a

Kubernetes cluster. The latter is installed and configured automatically with Chef [28] by

using Karamel [36], the installation framework of Hopsworks, during a Hopsworks cluster

installation. When users create a new project, a new namespace in Kubernetes will be

Platform Software Architecture - Version II, D1.6 18

H2020-825258

created for this project. For each user starting the Jupyter server in Hopsworks, the latter

creates a Kubernetes deployment that runs the Jupyter server and a sidecar that collects the

logs. These logs are sent to the ELK stack described in section 2 and displayed via Kibana to

the users within the Hopsworks UI.

A Docker image is pre-built and provided by Hopsworks that is responsible for running the

Jupyter server. The Docker file of this image is based on the official ubuntu one found on

Dockerhub and is responsible for the following:

1. Set the system user to run the container.

2. Install all necessary dependencies such as Java OpenJDK8.

3. Expose the port on which the Jupyter server is listening at.

4. Set the base working directories for infrastructure dependencies such as the project’s

Python environments based on the Anaconda distribution [45].

5. Start the Jupyter server.

In addition, this Docker image already contains a plethora of frameworks and libraries that

data scientists working with EO data typically use today. Such frameworks are TensorFlow

version 2.4 as per the time of writing, PyTorch version 1.7, cudatoolkit for working with

GPUs, and many more. Users can install libraries on top of this image and the architecture of

this mechanism is described in section 3.3 Python environment management.

Therefore, Hopsworks connects to Kubernetes to submit deployments and Kubernetes

manages the lifecycle of the Jupyter deployment. Hopsworks exposes lifecycle operations to

Hopsworks users and manages user authentication via its HTTP RESTful API with operations

such as start/stop the Jupyter server.

3.2 Jupyter notebooks as Jobs

Jupyter notebooks in Hopsworks can also run as regular PySpark or Python jobs, as

Hopsworks converts automatically the notebook into a PySpark or Python program which is

then submitted via the regular Hopsworks Jobs service. Figure 10 depicts the series of events

that occur for launching notebooks and jobs in Hopsworks, which is what Airflow also

leverages to provide DL pipeline orchestration. In short, Hopsworks reads the input

notebook file and converts it to an executable Python script using nbconvert [54]. The

PySpark or Python job then reads and executes it as it would with any other regular PySpark

or Python job. Hopsworks operators in Airflow can then be used to create a workflow, in the

form of a Directed Acyclic Graph (DAG), that makes use of the aforementioned jobs.

Furthermore, whenever the notebook is updated by the user, the changes are reflected on a

new job execution as the notebook is converted to a Python file upon every execution.

Platform Software Architecture - Version II, D1.6 19

H2020-825258

Figure 10. Jobs and notebooks execution framework

3.3 Python environment

Hopsworks has been extended with first-class support for self-service management of

Python dependencies within Hopsworks projects. A Hopsworks project is created along with

its own Python Anaconda environment [45]. This enables Python dependency isolation

between projects which is crucial in having a stable development and job execution

environment. The Hopsworks REST API exposes the same functionality to non-UI clients via

the PythonResource resource, with source code available at [5] and REST API documentation

at [6] under “/project/{projectId}/python/environments''. This Python environment is

shipped with the Docker image described in section 3.1. Users in Hopsworks manage this

environment through the UI in a self-service manner. Users therefore can:

● Search for Python libraries through pip or conda.

● Install libraries through pip, conda, git, wheel files.

● Uninstall libraries.

● List libraries.

● Export the Python environment in a yml file which can then be imported into

another project or used as a backup mechanism.

Python libraries might conflict with each other, resulting in potential incompatibilities when

running jobs and notebooks. Hopsworks has been extended with a mechanism that detects

such conflicts and displays them to the user. Figure 11 shows the Python environment of a

project and an example of such a conflict warning. Users can then take appropriate action by

installing the library versions of their choice.

Platform Software Architecture - Version II, D1.6 20

H2020-825258

Figure 11. Jobs and notebooks execution framework

Since the Python Anaconda environment is included in the Docker image of the project,

subsequent operations such as library install/uninstall are managed by Hopsworks by adding

additional layers on top of the project’s Docker image. Hopsworks is responsible for the

Docker image lifecycle: building the image, pushing it to the registry, and removing it if the

Python environment is reset or the project is deleted.

Some libraries that have been utilized by the ExtremeEarth use cases and WP4 “The Food

Security Use Case” and WP5 “The Polar Use Case” are TensorFlow for deep learning and

GDAL for data pre-processing for which more details are available in section 6 EO data

pre-processing.

Platform Software Architecture - Version II, D1.6 21

H2020-825258

4. Metadata support for EO and Big Data
Within the Hopsworks platform, data storage is managed by the distributed file system

HopsFS. Hopsworks has been extended with metadata management for datasets and files to

support both searching for data and tagging data with user-provided metadata. By providing

support for metadata, it is ensured that EO data can be properly annotated, cataloged, and

made accessible to appropriate users.

Metadata in Hopsworks is used primarily to discover and retrieve relevant files, directories,

datasets, and projects through the use of full-text search. Metadata is associated with a

particular file and is stored in the same database as the filesystem metadata of HopsFS.

Foreign keys in the database link the extended metadata with the target file, ensuring its

integrity and consistency. Extended metadata is exported to Elasticsearch, from where it can

be queried and the associated file/directory/dataset/project can be discovered and

accessed.

Hopsworks has been extended with metadata tagging capabilities for EO data. Tags are

additional metadata, extended metadata in the Hopsworks terminology, attached to

artifacts in Hopsworks, and thus they can be used not only for an enhanced full-text search

but also to provide users with a more dynamic metadata content that can be used for both

storages as well as enhancing artifact discoverability [61]. A tag is a {key: value} association,

providing additional information about the data, such as for example geographic origin. This

is useful in an organization as it adds more context to data making it easier to share and

discover data and artifacts.

A schema needs to be defined for the tags when they are attached to datasets. Schemas

follow https://json-schema.org as reference. The schemas define legal jsons and these can

be primitives, objects, or arrays. The schemas themselves are also defined as jsons. Allowed

primitive types are:

● string

● boolean

● integer

● number (float)

Complex schemas can be defined as well, for example

{
"type" : "object",
"properties" :
{

"location" : { "type" : "string" },
"dimensions" : { "type" : "string" },
"coordinates" : {

"type" : "array",

Platform Software Architecture - Version II, D1.6 22

H2020-825258

"items" : { "type" : "string" }
}

},
"required" : ["location", "dimensions"],
"additionalProperties": false

}

and a value for this tag is

{

"location" : "North Pole",

"dimensions" : "12345x6789",

"coordinates" : ["90.0000°N, 135.0000° W"]

}

In the underlying infrastructure built in Hopsworks, metadata changes are logged as a

consistent change stream to the filesystem. We further process this change stream using

ePipe, a databus that both creates a consistent change stream for a distributed, hierarchical

file system (HopsFS) and eventually delivers the correctly ordered stream with low latency to

downstream clients [33]. One of the downstream clients is Elasticsearch. This allows us to

provide full-text search capabilities with eventual consistency for all the added metadata.

As Figure 12 depicts, changes to the filesystem, including the extended metadata are logged

into NDB and processed by ePipe. The ePipe service subscribes to these changes and

replicates these in an eventual consistent manner to configurable endpoints. EPipe also

allows for data enrichment of the change events with additional information from the

database. By default, Hopsworks comes with two configured endpoints: Elasticsearch and

Apache Hive [14], a scalable data warehouse built on top of Apache Hadoop.

Platform Software Architecture - Version II, D1.6 23

H2020-825258

Figure 12. ePipe architecture

4.1 Search example

The demonstrator input data is stored in a dataset within Hopsworks named eodata. When

the dataset was created, the searchable option was set. That means the dataset metadata

using the mechanism described above replicated its metadata to the search engine

mechanism in Hopsworks. Figures 13 and 14 below show the search results for the term

eodata across all projects in Hopsworks.

Figure 13. Searching for term eodata

Platform Software Architecture - Version II, D1.6 24

H2020-825258

Figure 14. Search results when searching for term eodata

4.2 Tagging example

The following figures demonstrate how to create tags from the Hopsworks Administration

UI, how to view the details of a specific tag in the Administration, and finally how feature

search results are presented to users.

Figure 15. Admin UI to create a tag name location_polar in the new Hopsworks UI

Platform Software Architecture - Version II, D1.6 25

H2020-825258

Figure 16. Viewing a tag named “location” in the Admin UI

Figure 17. Search results when searching for feature “band”

Platform Software Architecture - Version II, D1.6 26

H2020-825258

Figure 18. Search results when searching for feature “band”

Platform Software Architecture - Version II, D1.6 27

H2020-825258

5. Data Ingestion
The first step in building a scalable Deep Learning pipeline is to locate the sources where the

input data reside. Then, processes need to be established that ingest, that is copy or move,

data from these sources into the platform where the DL pipeline runs. These sources can be

quite diverse in the format they use to store data and the protocols they implement to

deliver data over to other systems. Such sources include raw data which can come from

devices connected to the Internet of Things (IoT), images from satellites, structured data

from data warehouses, financial transactions from real-time systems, social media, etc.

Figure 19 builds on figure 1 to illustrate wherein the pipeline these external systems reside.

Figure 19. Data Ingestion sources for a DL pipeline

In the context of ExtremeEarth, we show the different ways in which Hopsworks has been

extended to make satellite imagery data easily ingested in the platform for further

processing.

5.1. Demonstrator Dataset

The scope of this deliverable is to demonstrate the extended Hopsworks platform and how it

can be utilized for building deep learning pipelines with EO data. WP4 “The Food Security

Use Case” and WP5 “The Polar Use Case'' make use of Hopsworks with big training datasets

developed for this project. As for this deliverable’s demonstrator, it was decided to use a

public and free dataset related to EO data and the Polar use case in particular. The input

dataset for the DL pipeline of this demonstrator is the “Statoil/C-CORE Iceberg Classifier

Challenge - Ship or iceberg, can you decide from space?” [37]. It is hosted by Kaggle which is

an online community of data scientists and machine learners and is distributed for free.

The schema for the Statoil dataset is presented in Figure 20. The data is in json format and

contains 1604 images. For each image in the dataset, we have the following information:

● id - the id of the image.

● band_1, band_2 - the flattened image data. Each band has 75x75

Platform Software Architecture - Version II, D1.6 28

H2020-825258

● pixel values in the list, so the list has 5625 elements. Band 1 and Band 2 are signals

characterized by radar backscatter produced from the polarizations to HH

(transmit/receive horizontally) and HV (transmitted horizontally and received

vertically).

● inc_angle - the incidence angle of which the image was taken.

● is_iceberg - set to 1 if it is an iceberg, and 0 if it is a ship.

Platform Software Architecture - Version II, D1.6 29

H2020-825258

Figure 20. Schema of the Statoil demonstrator dataset

Platform Software Architecture - Version II, D1.6 30

H2020-825258

5.2. Accessing EO Data from Hopsworks

In the context of ExtremeEarth, Hopsworks is deployed on a DIAS (CREODIAS) where EO data

required for this project resides. In Creodias, EO data is made available via an object store

where it can be accessed via the S3 protocol implemented by OpenStack Swift [4], or it can

be accessed via standardized web services such as WMS/WMTS/WCS/WFS [3]. Regarding

the latter, using a web client to access data is a well-known practice in the industry, and

existing solutions can be used directly in applications developed and deployed on

Hopsworks and it is beyond the scope of this deliverable to describe an example application

for such a scenario.

Hopsworks has been extended to allow arbitrary Python libraries to be installed by a

self-service User Interface (UI). As a result, Hopsworks users can easily install and use from

within Jupyter notebooks and PySpark jobs the boto3 library [7], to access EO data from

Python programs via the S3 protocol.

Figure 21 below demonstrates how to list the contents of an object store S3 bucket on

CREODIAS containing Sentinel-2 data. The boto3 API also provides methods for downloading

data. As a result, users developing DL pipelines in Hopsworks can easily list and download EO

data for further processing.

Figure 21. Accessing Sentinel-2 EO data with boto3 library and Jupyter

Platform Software Architecture - Version II, D1.6 31

H2020-825258

notebooks

Another way to directly access data via the S3 protocol is to use the Apache Spark connector

to S3 [8]. Security configuration parameters such as Access Key and Secret Key can be set in

the Hopsworks UI before launching a Jupyter notebook or a PySpark job.

Figure 22. Accessing local EO data from a PySpark program

EO data can also easily be accessed directly via the local filesystem. That is achieved by

utilizing the s3fs protocol to mount the S3 compatible object store containing the EO data to

the local filesystem on the operating systems Hopsworks is installed on. That makes it a lot

easier for end-users to write applications that read for example Sentinel images and then

proceed to perform some processing on them. The disadvantage of this approach is that

accessing data through s3fs does not perform as fast as directly accessing the data via S3.

However, it greatly depends on each use case whether this performance limitation affects

the end users’ applications. In the domain of this report, most applications are expected to

be batch in nature, and directly accessing EO data from the object store is expected to be

done only at the beginning of the DL pipeline. Then, EO data is preprocessed and new data is

generated which is to be used in later stages of the DL pipeline. Figure 22 demonstrates how

users can read a Sentinel-2 image stored in an S3 bucket directly into a PySpark application,

in this case, a PySpark dataframe.

Users can also have EO data stored directly in HopsFS, the distributed file system Hopsworks

is built on. A reason to do so might include wanting to share data, particularly data that has

Platform Software Architecture - Version II, D1.6 32

H2020-825258

been generated by applications that run on Hopsworks, across projects. D1.1 provides an

in-depth guide of how data can be shared among projects. Another reason might be that EO

data needed for a particular pipeline is available online or on the DIAS. Therefore such data

needs to be uploaded onto Hopsworks. The latter provides a REST API endpoint under “POST

/project/{projectId}/dataset/upload/{path}” [6] to upload any file types and have them

available from within a Hopsworks project. Figure 23 shows how to upload a file into a

project named ExtremeEarthTEP and into a dataset named EOData. Source code is available

at [9].

Figure 23. Uploading a file into an EOData dataset in the ExtremeEarthTEP project

In the demo DL pipeline, the input EO dataset is stored in a Hopsworks dataset “Statoil” of a

project “ExtremeEarth”.

6. EO data pre-processing

6.1 EO data pre-processing with Python

Oftentimes satellite data needs to be processed before being provided as input to machine

learning algorithms. By utilizing the Python support in Hopsworks as described in Section 3

Development Environment, data scientists in ExtremeEarth can use programs such as GDAL

to process EO data. GDAL is a translator library for raster and vector geospatial data formats

[59] and it comes with a Python package and extensions are a number of tools for

programming and manipulating the GDAL Geospatial Data Abstraction Library [60].

In the example below, some EO data in the form of a .TIF file is available in a Hopsworks

dataset. The data scientist can then install gdal from the project’s Python environment and

use it directly either from a Jupyter notebook or a Hopsworks Job. Figure 24 demonstrates

the first option, where a Jupyter notebook is used to read the .TIF file from a dataset, open it

using GDAL, read it as an array, and print a patch of the image.

Platform Software Architecture - Version II, D1.6 33

H2020-825258

Figure 24. Jupyter notebook processing monthly composists with GDAL in Python

6.2 EO data pre-processing with Docker and Kubernetes

Hopsworks has been extended in ExtremeEarth to provide support for working with

arbitrary programming languages and frameworks when processing EO data by enabling

users to run arbitrary Docker containers on Kubernetes via the Hopsworks Jobs service. The

motivation behind this functionality is that users might need to use tools and frameworks

that are not necessarily available in the Python anaconda environment of the project, such

as Java or C++ tools related to Remote Sensing and EO data.

As of the time of writing, Hopsworks has integrated Docker version 19.03.8 and Kubernetes

version 1.18.8. When users submit a Docker job in Hopsworks, the latter securely connects

to the Kubernetes cluster and submits a Kubernetes job that contains metadata and security

material (TLS certificates) unique for this job. Hopsworks is then able to monitor the job and

collect logs back to Hopsworks datasets. The entire Docker and Kubernetes infrastructure

stack is transparent to users, as they only need to interact with the Hopsworks UI and the

Platform Software Architecture - Version II, D1.6 34

H2020-825258

client APIs. Figure 25 displays the software stack integrated into Hopsworks that enables

users to run jobs and notebooks, including the Docker job type used for the EO data

pre-processing described in this section.

Figure 25. Hopsworks Jobs and notebooks services infrastructure

Users can specify the following properties for a Docker job:

● Docker image: The location of the Docker image. Currently only publicly accessible

docker registries are supported.

● Docker command: The command to run the Docker container with.

● Docker command arguments: Comma-separated list of input arguments of the

Docker command.

● Output path: The location in Hopsworks datasets where the output of the Job will be

persisted, if the programs running inside the container redirect their output to the

same container-local path. For example, if the output path is set to

/Projects/myproject/Resources and the container runs the command echo “hello” >>

/Projects/myproject/Resources/hello.txt, then the Hopsworks job upon job

Platform Software Architecture - Version II, D1.6 35

H2020-825258

completion will copy the entire content of the /Projects/myproject/Resources from

the docker container to the corresponding path with the same name under Datasets.

● Environment variables: Comma-separated list of environment variables to be set for

the Docker container.

● Volumes: Comma-separated list of volumes to be mounted with the Docker job.

● User id / Group Id: Provide the uid and gid to run the Docker container with. For

further details, look into the Admin options below.

Certain options are available to Hopsworks users with the role HOPS_ADMIN only, as these

are applied cluster-wide:

● docker_job_mounts_list: Comma-separated list of host paths jobs are allowed to

mount. Default is empty.

● docker_job_mounts_allowed: Whether mounting volumes are allowed. Allowed

values: true/false. Default is false.

● docker_job_uid_strict: Enable or disable strict mode for uig/gid of docker jobs. In

strict mode, users cannot set the uid/gid of the job. The default is true. If false and

users do not set uid and gid, the container will run with the uid/gid set in the

Dockerfile.

An example of a platform with a variety of tools for EO data processing in ESA’s SNAP toolbox

[56]. Docker images are available on Dockerhub with the ESA SNAP toolbox and GPT and for

this demonstrator the atavares/esa-snap was selected [58]. As Hopsworks is running within

the TEP and Creodias infrastructure, it has been extended to access the plethora of EO data

provided by these services, as described in section 5 Data Ingestion. In this example, a

Docker job is setup in Hopsworks that uses the GPT tool from the atavares/esa-snap Docker

image that is pulled from Dockerhub, reads Sentinal-1 data from the Creodias provided data

storage, runs the gpt tool to undersample the input data and outputs the data in the

Hopsworks datasets browser. Figure 26 shows the input data that is mounted as a volume

with the Docker job so that the GPT tool can read and process it.

Figure 26. EO data from CREODIAS in the Hopsworks PolarTEP cluster

Figures 27-29 show the configuration of this particular job, an overview of previous

executions of the job, and the output data in the datasets browser.

Platform Software Architecture - Version II, D1.6 36

H2020-825258

Figure 27. Docker job configuration for EO data pre-processing with ESA/SNAP and GPT

Figure 28. Docker job executions overview

Platform Software Architecture - Version II, D1.6 37

H2020-825258

Figure 29. EO data from Creodias in the Hopsworks PolarTEP cluster

7. Feature Engineering and Data Validation

7.1 Feature Store

Feature engineering can be described as the process with which domain knowledge on

ingested data is applied, in order to create features that are used in further stages of the DL

pipeline (Training). With the continuous growth in input data and increased complexity of DL

pipelines, arose the need for a framework that facilitates features engineering and reduces

the complexity of managing features.

To improve the management of curated feature data, Hopsworks has been extended with a

new framework named Feature Store. The Feature Store acts as the central management

layer for curated data in an organization and it serves as the interface between data

engineering and data science teams. The motivation of feature engineering is to generate

reusable features that can be shared across different teams in an organization and can

facilitate developing new ML models, as depicted in Figure 30. Benefits the Feature Store

brings include reuse of features across pipelines, feature discoverability with free-text search

across an organization's feature data, applying software engineering principles onto machine

learning features with versioning, documentation, and access-control, time-travel by

fetching past feature data that were used for training particular model, scalability in terms of

being able to manage multiple terabytes or even bigger feature datasets, analysis so data

scientists can gather useful insights regarding data distribution, correlation, etc. [13].

Platform Software Architecture - Version II, D1.6 38

H2020-825258

Figure 30. The feature store as the link between Feature Engineering and Training

To achieve all the aforementioned properties, the Feature Store is implemented on scalable,

fault-tolerant services. Offline data is stored in Apache Hive [14], a scalable data warehouse

built on top of Apache Hadoop, and online data is stored in MySQL Cluster. Offline features

can be used for training/experimentation and are used mostly in batch-oriented use cases

where past feature data can be fetched or huge volumes of feature data can be analysed to

generate statistics. Online features need to be accessible in real-time for pipelines that need

to get data at prediction time. Besides storing data, the Feature Store utilizes the Spark

integration in Hopsworks, described in the previous sections, to compute and analyze

features. Figure 31 shows the main components of the Hopsworks Feature Store.

Figure 31. Hopsworks Feature Store Architecture[13]

In the previous section, the Statoil/C-CORE Iceberg Classifier Challenge dataset used in this

demo was made available in Hopsworks by uploading it via the Hopsworks datasets browser

UI. The second step in the pipeline is to do some feature engineering of the input dataset,

Platform Software Architecture - Version II, D1.6 39

H2020-825258

which is demonstrated in Figure 32. Initially, the raw dataset is read from its location in

HopsFS “hdfs://127.0.0.1:8020/Projects/ExtremeEarth/eodata/train.json” into a Pandas

dataframe, an open-source Python library for data manipulation and analysis [46], in the

Python program. The dataset is in json format and Pandas natively supports reading from

this file format. We extended Pandas with wrapper functions to read such file formats

directly from HopsFS [17]. Then a new feature band_avg is computed which is the average of

the two image bands, band_1 and band_2. Finally, the new raw_train_df is saved back to a

Hopsworks dataset in HopsFS. That way, the dataset is made available to further processing

steps. Figure 32 demonstrates the process described so far, with the full version of the

iPython notebook being available at [18].

Platform Software Architecture - Version II, D1.6 40

H2020-825258

Figure 32. Processing the raw dataset

Platform Software Architecture - Version II, D1.6 41

H2020-825258

The next step of this stage is to read the dataset that was processed previously, and create a

Feature Group in the Feature Store. Figure 33 demonstrates how this is achieved by using

the Hopsworks Feature Store Python API of the hsfs Python library. In this demo, the dataset

is read first from HopsFS into a PySpark dataframe train_preprocessed_all_df which is then

inserted into the Feature Store and more specifically into a Feature Group called iceberg. A

feature group is a documented and versioned group of features. In this example,

automatically generating statistics has been disabled (set to False) to speed up the creating

process. Statistics can be updated at any time after the Feature Group is created, either

through the UI or the API.

Figure 33. Create and populate the Feature Group

The next step is to export the feature data into a training dataset in tfrecord format, which

can be used by the next pipeline stage, Training. Figure 34 demonstrates how this is

achieved by using the Python API in the same notebook.

Figure 34. Creating training and test datasets in tfrecord format

Users are also able to interact with the Feature Store from the Hopsworks UI. Figure 35

shows the feature group overview in the Hopsworks UI.

Platform Software Architecture - Version II, D1.6 42

H2020-825258

Figure 35. iceberg feature group in Hopsworks

7.2 Feature Validation

Feature validation is the process of inspecting and cleansing data to be used as features in

machine learning models in order to ensure their quality is sufficiently good for them to be

processed by the subsequent stages of the DL pipeline. The process of performing feature

validation can greatly vary in terms of implementation from among DL pipelines or among

data engineers and scientists. A reason for this is that data validation is not a strict set of

rules that need to be applied to ingested data, rather is a set of best practices and some

common rules, derived typically from the domain of statistics.

In ExtremeEarth, there is one more constraint that needs to be taken into account when

establishing a feature validation process, which is that the latter needs to be applied to large

volumes of data in a distributed storage and processing environment. In addition, data

validation in this DL pipeline context is applied to the feature data that reside in the Feature

Store and then are extracted in the form of training or test datasets to be served as input in

the Training stage. To achieve data validation at scale, the Hopsworks Feature Store has been

extended to support feature validation by introducing the concepts of Feature Expectations

and Validation rules/results. This validation framework is built on Apache Spark and Deequ

[25]. Deequ is an open-source library built on top of Apache Spark that helps developers

establish data validation rules and extract useful information regarding large datasets.

To demonstrate feature validation, the validation rules applied on the ingested dataset are

shown in the table below. A full list of validation rules supported in Hopsworks is available at

the feature validation guide of the feature store documentation page [55].

Platform Software Architecture - Version II, D1.6 43

H2020-825258

HAS_DATATYPE ACCEPTED_
TYPE

String - Assert on the
fraction of rows
that conform to
the given data
type.

HAS_MAX VALUE Fractional Quantitative Assert on the
max of a
feature.

HAS_MIN VALUE Fractional Quantitative Assert on the
min of a
feature.

These rules were grouped in two feature store expectations which were then attached to the

iceberg feature group as shown in the code snippet in figure 36. In particular:

1. HAS_DATATYPE: Asserts that the feature id of the iceberg feature group does not

contain null values. This is asserted by setting the max allowed null values to zero.

Additionally, the is_iceberg label is also expected to only contain numbers by setting

the threshold for required numeric values of is_iceberg to 1.

2. HAS_MAX: Assertion on the maximum allowed value of the is_iceberg label, which is

set to 1

3. HAS_MIN: Assertion on the minimum allowed value of the is_iceberg label, which is

set to 0.

Platform Software Architecture - Version II, D1.6 44

H2020-825258

Figure 36. Feature expectations Python API example

Figure 37. Feature expectation in the Hopsworks UI

The validation type is set to Strict, which means that if any expectation is not met then the

data will be inserted into the feature group. The rest of the validation types are:

● WARNING: Data validation is performed and feature group is updated only if

validation status is "Warning" or lower

● ALL: Data validation is performed and feature group is updated only if validation

status is "Failure" or lower

● NONE: Data validation not performed on feature group

Platform Software Architecture - Version II, D1.6 45

H2020-825258

The validation results of expectations for the iceberg feature group are displayed in JSON

format in figure 38 and can be accessed via the feature store API or via the Hopsworks UI.

Figure 38. Feature validation results for an ingested dataframe

Platform Software Architecture - Version II, D1.6 46

H2020-825258

Figure 39. iceberg feature group validations in Hopsworks UI

Platform Software Architecture - Version II, D1.6 47

H2020-825258

8. Training
For doing machine learning training, it is useful to have a common abstraction that defines

the type of training, the configuration parameters, the input dataset, and the infrastructure

environment that the machine learning program runs in. In Hopsworks, the abstraction of an

Experiment is used to encapsulate the aforementioned properties. To productionize ML

models, it is important to be able to easily run a past experiment in case for example a

software bug was discovered and the models need to be developed again based on

previously seen data. A repeatable experiment is an abstraction that enables users to rerun

a past experiment by managing to reproduce the execution environment, fetch the exact

same data the original experiment ran on, and set the same configuration properties as well.

Section “Experiments & Distributed Training” of deliverable D1.1 describes initial work done

on the Hopsworks Experiments framework. D1.1 focused on Experiments (section 7.1),

Parallel Experiments (7.2), and Distributed Training (7.3). This deliverable builds on this work

by demonstrating how to run all three types of experiments on the Iceberg dataset used by

the previous stages of the Deep Learning pipeline.

Furthermore, the Experiments framework in Hopsworks has been extended with Maggy, a

framework for distribution-transparent ML experiments, including distributed training,

hyperparameter tuning, and ablation studies [19] [40] .

8.1 Experiments

Machine learning training was developed with TensorFlow version 2.4, an open-source

end-to-end ML platform [47]. First, a training function needs to be defined that will be given

as input into the Hopsworks experiments API that tracks the metadata of the training

program and creates an instance of the Experiments abstraction. The training function first

compiles the model that has been created in a previous cell of the notebook and then adds

some callbacks for configuration of the TensorBoard. Then the Keras estimator, part of the

Keras Deep open-source neural-network Python library [48], is used to train and evaluate

the model. The input of the model is fetched from the training and test TFRecord datasets

that were created from the feature store in the previous DL stage (section 6). After training is

completed, the model is exported by using the serving module of the hops-util-py library of

Hopsworks. Figure 40 shows the Jupyter configuration used to run the experiment.

Platform Software Architecture - Version II, D1.6 48

H2020-825258

Figure 40. Jupyter configuration for training the iceberg detection model

Figures 41-44 demonstrate the main parts of the training notebook, namely “train and

evaluate”, exporting the model, and launching the experiment with the experiment API.

Platform Software Architecture - Version II, D1.6 49

H2020-825258

Figure 41. Iceberg detection model architecture

Figure 42. Iceberg detection model training function (read training data)

Platform Software Architecture - Version II, D1.6 50

H2020-825258

Figure 43. Iceberg detection model training function, launch and export model

Figure 44. Iceberg detection model experiments API launch training

Platform Software Architecture - Version II, D1.6 51

H2020-825258

Figure 45. Experiment details in Hopsworks Experiments registry

Figure 46. Experiment logs shown from the Hopsworks Experiments registry

8.2 Parallel Experiments

Parallel experiments can significantly speed up the process of exploring hyper-parameter

combinations that work best for the ML model. Hopsworks Experiment API makes

hyper-parameter search trivial, by allowing users to define the search space in a dictionary

which is provided as input into the same experiment.launch method demonstrated in

Platform Software Architecture - Version II, D1.6 52

H2020-825258

Section 7.1. The rest of the notebook, including the training function and exporting the

model, is the same as the single experiment one. Figures 47 and 48 demonstrate how to set

different learning rates and feed them as input into the notebook.

Figure 47. Iceberg hyper parameter tuning with parallel experiments

Figure 48. Iceberg hyper parameter tuning with parallel experiments in the Hopsworks

Experiments registry

While training is ongoing, users can follow the progress of the parallel experiments by

navigating to the TensorBoard of this experiment via the Hopsworks Experiments service.

Figure 49 shows the tensorboard of the parallel experiments notebook.

Platform Software Architecture - Version II, D1.6 53

H2020-825258

Figure 49 . Iceberg hyper parameter tuning with parallel experiments tensorboard

Jupyter needs to be launched with the Parallel Experiments configuration to enable running

notebooks with the parallel experiments API. Figure 50 shows how Jupyter was started for

this running the iceberg parallel experiments.

Figure 50. Jupyter configuration for parallel experiments with GPUs

Platform Software Architecture - Version II, D1.6 54

H2020-825258

8.3 Distributed Training

For distributed training, the same model was used as in the previous sections, however,

Jupyter was started with the Distributed Training configuration. In particular, the Mirrored

Strategy as shown in Figure 51. Figures 52 and 53 demonstrate how the experiments API is

used for distributing training from a Jupyter notebook. Details of the architecture and

implementation of the distributed training experiments framework in Hopsworks is available

in the deliverable D1.5 Hops data platform integration guide for applications - version II.

Figure 51. Distributed training Jupyter configuration. 2 workers with 1 GPU Each

Platform Software Architecture - Version II, D1.6 55

H2020-825258

Figure 52. Iceberg distributed training function

Figure 53. Iceberg distributed training experiments API launch

The notebook itself for distributed training is available online in the ExtremeEarth GitHub

repository [34].

8.4 Hyperparameter Tuning with Maggy

Hopsworks has been extended with a new framework called Maggy for performing efficient

asynchronous optimization of expensive black-box functions on top of Apache Spark. Maggy

is not bound to stage-based optimization algorithms, contrary to existing frameworks.

Therefore it is able to make extensive use of early stopping in order to achieve efficient

resource utilization [19]. As of this deliverable, Maggy supports asynchronous

hyperparameter tuning of machine learning and deep learning models, and ablation studies

on neural network layers as well as input features.

The main component of Maggy is an RPC mechanism that is implemented that enables

results of trials to be reported from the executors back to the driver in Spark. The Optimizer

Platform Software Architecture - Version II, D1.6 56

H2020-825258

component that runs on the driver is then responsible for deciding when to stop a trial and

send new tasks to executors. The latter are blocked by long-running tasks so they can run

multiple trials for every scheduled task, instead of only one trial per task as was the case

previously.

Figure 54 depicts the RPC mechanism implemented between the driver and executors in

Maggy.

Figure 54. Maggy early stopping in Apache Spark

Creating and evaluating the model is similar to the previous experiments examples. The

training function train_fn in the iceberg Maggy notebook optimizes three hyper-parameters,

kernel, pool, and dropout. Figure 55 demonstrates how the Maggy reporter is configured in

the training function.

Platform Software Architecture - Version II, D1.6 57

H2020-825258

Figure 55. Iceberg hyper-parameter optimization with Maggy - training function

Figures 56 and 57 demonstrate how the search space for hyper-parameters is defined with

Maggy and then how the experiment is launched by using the experiment.lagom API. The

output of the experiment.lagom invocation is printed in the notebook itself under the cell

that starts the experiment, and a progress bar gets updated as the trials finish executing.

Platform Software Architecture - Version II, D1.6 58

H2020-825258

Also, the print function is overridden to redirect the output from the workers output to the

cell output, which makes debugging and experimentation easier.

Figure 56. Iceberg hyper-parameter optimization with Maggy - search space

Platform Software Architecture - Version II, D1.6 59

H2020-825258

Figure 57. Iceberg hyper-parameter optimization with Maggy - launch

Once all trials are executed, a summary of results is printed as the final output, as can be

seen in Figure 58.

Figure 58. Iceberg hyper-parameter optimization with Maggy - results

Platform Software Architecture - Version II, D1.6 60

H2020-825258

8.5 Ablation studies

In the context of machine learning, we can define an ablation study as “a scientific

examination of a machine learning system by removing its building blocks in order to gain

insight on their effects on its overall performance”. Dataset features and model components

are notable examples of these building blocks (hence we use their corresponding terms of

feature ablation and model ablation), but any design choice or module of the system may be

included in an ablation study. By removing each building block (e.g., a particular layer of the

network architecture, or a set of features of the training dataset), retraining, and observing

the resulting performance, we can gain insights into the relative contributions of each of

these building blocks.

An ablation study can be thought of as an experiment that consists of several trials. For

example, each model ablation trial involves training a model with one or more of its

components (e.g., a layer) removed. Similarly, a feature ablation trial involves training a

model using a different set of dataset features, and observing the outcomes.

Figure 59. Ablation studies architecture

With Maggy, performing ablation studies of machine learning or deep learning systems is a

fairly simple task that consists of the following steps:

● Creating an AblationStudy instance,

● Specifying the components that you want to ablate by including them in your

AblationStudy instance,

● Defining a base model generator function and/or a dataset generator function,

● Wrapping your TensorFlow/Keras code in a Python function (called e.g., the training

function) that receives two arguments (model_function and dataset_function), and

● Launching your experiment with Maggy while specifying an ablation policy.

Platform Software Architecture - Version II, D1.6 61

H2020-825258

Maggy will then take care of generating the corresponding ablation trials and executing

them in parallel.

Figure 60. Maggy ablation studies notebook example - ablations

The above figure shows the process of defining a model ablation study experiment with

Maggy. Users can include individual layers, or “layer groups”, e.g., for blocks of similar layers

generated with loops.

After the training function is defined, the user has to pass it to Maggy’s lagom method to

launch the experiment in parallel (in case there are multiple workers):

Platform Software Architecture - Version II, D1.6 62

H2020-825258

Figure 61. Maggy ablation studies notebook example - results

Platform Software Architecture - Version II, D1.6 63

H2020-825258

9. Model Analysis
Section 3.3 of deliverable D1.5 Hops data platform integration guide for applications -

version II describes how Hopsworks users can use the What-If tool for doing model analysis

on Hopsworks. This demonstrator deliverable shows how this tool can be used to perform

model analysis on the demonstrator dataset. Deliverable D1.4, the previous version of this

deliverable, integrated TensorFlow Model Analysis (TFMA) with Apache Beam and Apache

Flink. This deliverable does not make use of this integration as it could be overly complex for

the majority of cases where model analysis needs to be done. Also, the tools involved have

frequent braking changes and are focused on execution in the Google cloud environment.

Users can still utilize the Python and Flink support in Hopsworks to use such tools if needed

as. The What-If tool covers the great majority of use cases and also fits seamlessly into the

current demonstrator that uses TensorFlow for model development. In addition, the What-If

tool provides powerful and interactive visualizations via Jupyter.

Hopsworks has been expanded to include the What-If as part of the default Python

environments that projects in Hopsworks come with. Therefore, users do not need to install

it separately avoiding any risks of Python library dependency conflicts as well.

Figure 62 shows the code snippet used to perform model analysis for the sea iceberg

classification model developed with the demonstrator dataset in this deliverable. Users set

the number of data points to be displayed, the test dataset location to be used for analysis

of the model, and the features to be used.

Figure 62. Model analysis what-if tool code snippet

Figure 63 depicts the performance and fairness of the model based on a particular feature of

the model. Figure 64 shows descriptive statistics for the feature spec provided to the what-if

tool.

Platform Software Architecture - Version II, D1.6 64

H2020-825258

Figure 63. Performance and Fairness of the model

Figure 64. Feature statistics

Platform Software Architecture - Version II, D1.6 65

H2020-825258

10. Model Serving & Monitoring
Deliverable 1.1 provided design guidelines for productionizing model serving with

Hopsworks. After a model has been developed and exported by the previous stages in the

DL pipeline, it needs to be served so that external clients can use it for inference.

After the model is deployed, its performance needs to be monitored in real-time so that

users can decide when it would be the best time to trigger the training stage. Hopsworks has

been extended to provide support for TensorFlow serving and Scikit-learn, an open-source

ML Python library [51]. Hopsworks has been extended with a Kubernetes cluster on which

docker containers are deployed that run TensorFlow serving and Scikit-learn. Users have the

option to select the number of instances for model serving at runtime, therefore Hopsworks

provides users with the important property of elasticity.

This demo uses TensorFlow serving as the model has been developed and exported using

TensorFlow. Inference requests are proxied through the Hopsworks REST API to provide

secure multi-tenant access to Hopsworks where role-based access control is done based on

projects. Project members are allowed to submit requests only to the models being served

from within their projects.

Inference requests are logged in Apache Kafka [20] which is provided as a multi-tenant

service in Hopsworks. Avro schemas [21] are attached to Apache Kafka topics in Hopsworks.

By default, each project gets a default inference schema, depicted in Figure 65.

Platform Software Architecture - Version II, D1.6 66

H2020-825258

Figure 65. Inference avro schema

The schema is used to store the inference requests in Apache Kafka in a structured way, so

that client applications can then read in real-time the inference requests and apply some

business logic on how the model is performing. Figure 66 depicts the overall architecture of

model serving and monitoring in Hopsworks.

Platform Software Architecture - Version II, D1.6 67

H2020-825258

Figure 66. Model monitoring and logging architecture

In the previous Training stage of the DL pipeline, the model was exported by using the

serving module of the hops-util-py library. The model is persisted under the dataset Models

and the name chosen for this demo was ship_iceberg_classifier. Figure 67 demonstrates

how the model serving instance for ship_iceberg_classifier is created. The fields users can

set are:

● Model: The directory where the versions of the model are stored. The directory

structure respects the TensorFlow serving directory convention.

● Model Version: Which version of the model to be served.

● Request batching: Whether to batch inference requests.

● Instances: Number of model serving instances to be spawned in Kubernetes.

● Kafka topic: Whether to create a new Kafka topic to store the inference requests.

● Kafka Num Partitions: Number of topic partitions.

● Kafka replication factor: The replication factor for each topic.

Platform Software Architecture - Version II, D1.6 68

H2020-825258

Figure 67. Model serving create UI

Figure 68 shows the main Model Serving dashboard after the serving instance has started.

By clicking the “Show Detailed Information” button, users can view the endpoints where

inference requests are being served from.

Figure 68. Model serving details

An important aspect of making a model serving production-ready, is to be able to collect logs

in real-time and make them easily accessible to users. Hopsworks uses the ELK stack to

achieve that, as it collects logs using Filebeat, persists them in Elasticsearch, and visualizes

them with Kibana. Figure 69 shows the logs of ship_iceberg_classifier TensorFlow serving

instances.

Platform Software Architecture - Version II, D1.6 69

H2020-825258

Figure 69. Model serving logs in Kibana

Since the model serving instance is running, users can now start submitting inference

requests Figure 70 demonstrates how the serving.make_inference_request() function is

used to submit the requests to the serving instance. Implementation of the serving module

is available at [22]. In this demo, 10 images from the TFRecord dataset are read and then

sent for inference. The result prints the prediction for each image and the label.

Platform Software Architecture - Version II, D1.6 70

H2020-825258

Figure 70. Submitting inference requests with the Hopsworks Python client APIs

In this demo, 10 inference requests were submitted. In another Python program from an

IPython notebook, the monitoring job is started. The first step is to connect to the

ShipIcebergClassifier-inf4422 Kafka topic that stores the inference requests and their

metadata. Users can also manage the topic from the Kafka service menu in Hopsworks UI, as

depicted in Figure 71.

Figure 71. Model inference logging Kafka topic details

Platform Software Architecture - Version II, D1.6 71

H2020-825258

In the notebook, the Kafka client (consumer) is instantiated and subscribes to the inference

topic as shown in Figure 72.

Figure 72. Submitting inference requests with the Hopsworks Python client APIs

For brevity, in this example one message is consumed from the topic, that is one inference

request, and part of its data is logged, as shown in Figure 73. It is trivial to change the

number of inference requests to be logged periodically by modifying the logging loop.

Figure 73. Inference request data fetched from the monitoring system

Platform Software Architecture - Version II, D1.6 72

H2020-825258

11. Orchestration
All previous sections have demonstrated how to apply transformations and processing steps

to data via a Deep Learning pipeline, in order to go from raw data into an ML model. So far

all steps had to be manually executed in a proper order to produce the output model.

However, once that process is established it can then be quite repetitive in nature. That

means it decreases the efficiency of data scientists whose primary focus is on improving the

accuracy of the models by applying novel techniques and algorithms. Such a repetitive

process then should be automated and managed easily with the help of software tools.

One such tool is Apache Airflow (Airflow) [2], a platform to programmatically schedule and

monitor workflows. Airflow is built on top of three core concepts: DAGs, Operators, and

Tasks [10]. A Directed Acyclic Graph (DAG) is a model of the tasks you wish to run defined in

Python. The model is organized in such a way that clearly represents the dependencies

among the tasks.

A DAG constructs a model of the workflow and the tasks that should run. So far a task is

quite general, operators define what a task should actually execute. Operators are usually (it

is recommended) atomic in the sense that they can stand on their own without sharing state

with others. Tasks are instantiated operators at a specific point in time. Since workflows can

be scheduled to run repeatedly, operators’ results may vary. So tasks are also defined by the

time which ran.

To this end, Hopsworks has extended Airflow in three ways:

1. Airflow has been integrated as a multi-tenant service accessible from a Hopsworks

project. Members of a project are allowed to access only the Airflow workflows

(DAGs) that are uploaded in the workflows directory of their project.

2. By providing Hopsworks specific Airflow operators that facilitate the development of

creating workflows that implement DL pipelines. Development of Airflow workflows

in Hopsworks typically involves launching Jupyter notebooks or PySpark programs.

3. By providing an intuitive UI as part of the Airflow service in a Hopsworks project, that

enables users to define the order of task execution by selecting the jobs and the

operators/sensors from.

Implementation of these operators and sensors is available in the logicalclocks GitHub

repository [24] in the form of source code. The notebooks presented so far can be chained

together in a series of tasks that can run in sequence or in parallel. Users define the order of

task execution and how tasks depend on each other. This definition in vanilla Airflow is

implemented by a Python program that users need to develop. The program uses Airflow

Python libraries to create the DAG which can then be administered and monitored from the

Airflow UI. A new UI, the Airflow DAG composer, has been developed in Hopsworks that

enables users to create workflows by selecting Hopsworks Airflow Operators and Sensors.

Users need to first create a job with the selected file to run being a notebook. The python

Platform Software Architecture - Version II, D1.6 73

H2020-825258

program iceberg_pipeline.py [23] defines the DAG and is auto-generated from the DAG

composer. Pipelines can be scheduled and the first step of the DAG composer is to provide a

name for the DAG and an optional schedule. If no schedule is defined, the DAG needs to be

started manually from the Airflow UI. In addition, an optional parameter for an API key is

provided for DAGs that need to be triggered from a remote instance and not from within

Hopsworks. Figure 74 shows this first step of the DAG creation wizard.

Figure 74. New Airflow workflow wizard

Figure 75 shows how users can easily set the HopsworksOperator properties, which are

which job to run and after which task this job should run, hence creating a dependency in

the graph (DAG).

Figure 75. New Airflow workflow wizard - Operators

Platform Software Architecture - Version II, D1.6 74

H2020-825258

Figure 76 shows the available operators and sensors and the ones that the user has selected.

By clicking the “Generate Airflow DAG” button, the python file of the DAG is generated and

persisted in Hopsworks.

Figure 76. Airflow service UI in Hopsworks

Figure 77 shows the Tree View of the workflow from the Airflow UI. The latter provides a

plethora of different types of views and tools to manage the lifecycle of a workflow.

Figure 77. Airflow tree-view tasks

12. Hopsworks TEPs Integration
This section has been expanded and moved to deliverable “Platform software architecture -

version II”.

Platform Software Architecture - Version II, D1.6 75

H2020-825258

13. References
[1] “Say Hello to Asynchronous Search for PySpark”
https://towardsdatascience.com/say-hello-to-asynchronous-search-for-pyspark-64c692a055
95 [Online; accessed 1-June-2021]
[2] “Apache Airflow” https://airflow.apache.org/ [Online; accessed 15-November-2019]
[3] “Creodias data access interfaces” https://creodias.eu/data-access-interfaces. [Online;
accessed 2-April-2019]
[4] “S3/Swift REST API Comparison Matrix”
https://docs.openstack.org/swift/latest/s3_compat.html [Online; accessed
22-November-2019]
[5] “PythonResource.java”
https://github.com/logicalclocks/hopsworks/blob/v1.0.0/hopsworks-api/src/main/java/io/hops/
hopsworks/api/python/PythonResource.java [Online; accessed 22-November-2019]
[6] “Hopsworks REST API - Swagger”
https://app.swaggerhub.com/apis-docs/logicalclocks/hopsworks-api/2.2.0 [Online; accessed
5-May-2021]
[7] “Boto3 Documentation”
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html [Online; accessed
22-November-2019]
[8] “Spark Integration with Cloud Infrastructures”
https://spark.apache.org/docs/2.4.3/cloud-integration.html [Online; accessed
22-November-2019]
[9] “Hopsworks UploadService.java”
https://github.com/logicalclocks/hopsworks/blob/v1.0.0/hopsworks-api/src/
main/java/io/hops/hopsworks/api/util/UploadService.java#L322 [Online; accessed
23-November-2019]
[10] “Hopsworks read the docs Airflow” https://hopsworks.readthedocs.io/
en/latest/user_guide/hopsworks/airflow.html. [Online; accessed 23-November-2019]
[11] “SPIP: Accelerator-aware task scheduling for Spark”
https://issues.apache.org/jira/browse/SPARK-24615 [Online; accessed 27-November-2019]
[12] “Logical Clocks Spark GitHub repository”
https://github.com/logicalclocks/spark/tree/branch-2.4 [Online; accessed 27-November-2019]
[13] “Feature store”
https://hopsworks.readthedocs.io/en/1.0/user_guide/hopsworks/featurestore.html [Online;
accessed 27-November-2019]
[14] “Apache Hive” https://hive.apache.org/ [Online; accessed 27-November-2019]
[15] “MySQL Cluster” https://www.mysql.com/products/cluster/ [Online; accessed
27-November-2019]
[16] “Pandas” https://pandas.pydata.org/ [Online; accessed 27-November-2019]
[17] “pandas_helper.py”
https://github.com/logicalclocks/hops-util-py/blob/7ae489ce918732f3dd23
608e8d268a3686664cab/hops/pandas_helper.py [Online; accessed 27-November-2019]
[18] “End-to-end D1.8 demo pipeline”

Platform Software Architecture - Version II, D1.6 76

https://towardsdatascience.com/say-hello-to-asynchronous-search-for-pyspark-64c692a05595
https://towardsdatascience.com/say-hello-to-asynchronous-search-for-pyspark-64c692a05595
https://app.swaggerhub.com/apis-docs/logicalclocks/hopsworks-api/2.2.0
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

H2020-825258

https://github.com/ExtremeEarth-Project/eo-ml-examples/tree/main/D1.8 [Online; accessed
27-May-2021]
[19] “Maggy” https://github.com/logicalclocks/maggy [Online; accessed 27-November-2019]
[20] “Apache Kafka” https://kafka.apache.org/ [Online; accessed 27-November-2019]
[21] “Apache Avro” https://avro.apache.org/docs/1.8.1/spec.html [Online; accessed
27-November-2019]
[22] “hops-util-py serving”
https://github.com/logicalclocks/hops-util-py/blob/v1.0.0.0/hops/serving.py [Online; accessed
27-November-2019]
[23] “iceberg_pipeline.py”
https://github.com/ExtremeEarth-Project/eo-ml-examples/blob/main/D1.8/iceberg_pipeline.py
[Online; accessed 27-November-2019]
[24] “Hopsworks Airflow operators and sensors”
https://github.com/logicalclocks/airflow-chef/tree/1.0/files/default/hopsworks_plugin [Online;
accessed 30-November-2019]
[25] “Deequ” https://github.com/awslabs/deequ [Online; accessed 30-November-2019]
[26] Sheikholeslami, Sina, et al. "AutoAblation: Automated Parallel Ablation Studies for Deep
Learning." Proceedings of the 1st Workshop on Machine Learning and Systems. 2021.
[27] “Model Training notebook”
https://github.com/ExtremeEarth-Project/eo-ml-examples/blob/main/D1.8/%5Bdone%5DStep
3a_Model_Training.ipynb [Online;accessed 21-May-2021]
[28] “Chef” https://www.chef.io/ [Online; accessed 1-December-2019]
[29] Apache Beam https://beam.apache.org/ [Online; accessed 1-December-2019]
[30] “Apache Flink” https://flink.apache.org/ [Online; accessed 1-December-2019]
[31] “Apache Beam Portability Framework”
https://beam.apache.org/roadmap/portability/ [Online; accessed 1-December-2019]
[32] “Python Streaming Pipelines on Flink - Beam Meetup at Lyft 2019”
https://www.slideshare.net/ThomasWeise/python-streaming-pipelines-on-flink-beam-meetup-
at-lyft-2019 [Online; accessed 1-December-2019]
[33] Ismail, Mahmoud, et al. "ePipe: Near Real-Time Polyglot Persistence
of HopsFS Metadata." 19th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, CCGRID 2019, Larnaca, Cyprus, May 14-May17, 2019. 2019.
[34] “Iceberg demo distributed training”
https://github.com/ExtremeEarth-Project/eo-ml-examples/blob/main/D1.8/%5Bdone%5DStep
3c_Model_Training_Distributed.ipynb [Online;accessed 21-May-2021]
[35] “ELK stack” https://www.elastic.co/what-is/elk-stack [Online;
accessed 1-December-2019]
[36] “Karamel” http://www.karamel.io/ [Online; accessed 8-December-2019]
[37] “Statoil/C-CORE Iceberg Classifier Challenge”
https://www.kaggle.com/c/statoil-iceberg-classifier-challenge/data [Online;accessed
8-December-2019]
[38] “CREODIAS” https://creodias.eu/ [Online; accessed 10-December-2019]
[39] “OpenStack” https://www.openstack.org/ [Online; accessed 10-December-2019]

Platform Software Architecture - Version II, D1.6 77

https://github.com/ExtremeEarth-Project/eo-ml-examples/tree/main/D1.8
https://github.com/logicalclocks/hops-util-py/blob/v1.0.0.0/hops/serving.py
https://github.com/ExtremeEarth-Project/eo-ml-examples/blob/main/D1.8/iceberg_pipeline.py
https://github.com/ExtremeEarth-Project/eo-ml-examples/blob/main/D1.8/%5Bdone%5DStep3a_Model_Training.ipynb
https://github.com/ExtremeEarth-Project/eo-ml-examples/blob/main/D1.8/%5Bdone%5DStep3a_Model_Training.ipynb
https://github.com/ExtremeEarth-Project/eo-ml-examples/blob/main/D1.8/%5Bdone%5DStep3c_Model_Training_Distributed.ipynb
https://github.com/ExtremeEarth-Project/eo-ml-examples/blob/main/D1.8/%5Bdone%5DStep3c_Model_Training_Distributed.ipynb

H2020-825258

[40] Meister, Moritz, et al. "Maggy: Scalable Asynchronous Parallel Hyperparameter Search."
Proceedings of the 1st Workshop on Distributed Machine Learning. 2020.
[41] Apache Spark, Logical Clocks fork.
https://github.com/logicalclocks/spark [Online; accessed 23-December-2019]
[42] Prometheus metrics monitoring service.
https://github.com/prometheus/prometheus [Online; accessed 5-May-2021]
[43] Grafana monitoring framework. https://grafana.com/ [Online; accessed
23-December-2019]
[44] Jupyter notebook. https://jupyter.org [Online; accessed 5-May-2021]
[45] Anaconda Python distribution.
https://www.anaconda.com/distribution/ [Online; accessed 23-December-2019]
[46] Pandas. https://pandas.pydata.org/ [Online; accessed 23-December-2019]
[47] TensorFlow. https://www.tensorflow.org/ [Online; accessed 23-December-2019]
[48] Keras https://keras.io/. [Online; accessed 23-December-2019]
[49] Chicago taxi rides dataset.
https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew [Online; accessed
23-December-2019]
[50] TensorFlow Extended (TFX). https://www.tensorflow.org/tfx
[51] Scikit-learn. https://scikit-learn.org/stable/ [Online; accessed 23-December-2019]
[52] OpenStack. https://www.openstack.org/ [Online; accessed 23- December-2019]
[53] How we secure your data with Hopsworks
https://www.logicalclocks.com/blog/how-we-secure-your-data-with-hopsworks [Online;
accessed 5-May-2021]
[54] nbconvert: convert Notebooks to other formats
https://nbconvert.readthedocs.io/en/latest/ [Online; accessed 5-May-2021]
[55] Feature Store documentation
https://docs.hopsworks.ai/2.3.0-SNAPSHOT/generated/feature_validation/ [Online; accessed
6-May-2021]
[56] ESA SNAP Toolbox https://step.esa.int/main/toolboxes/snap/ [Online; accessed
6-May-2021]
[57] Kubernetes jobs https://kubernetes.io/docs/concepts/workloads/controllers/job/ [Online;
accessed 6-May-2021]
[58] esa-snap docker image https://hub.docker.com/r/atavares/esa-snap [Online;accessed
7-May-2021]
[59] GDAL https://gdal.org/ [Online; accessed 7-May-2021]
[60] GDAL Python package https://pypi.org/project/GDAL/ [Online; accessed 7-May-2021]
[61] Hopsworks Feature Store tags
https://docs.hopsworks.ai/latest/generated/tags/#tag-schemas [Online; accessed
11-May-2021]

Platform Software Architecture - Version II, D1.6 78

https://github.com/prometheus/prometheus
https://jupyter.org
https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
https://www.tensorflow.org/tfx
https://www.logicalclocks.com/blog/how-we-secure-your-data-with-hopsworks
https://nbconvert.readthedocs.io/en/latest/
https://docs.hopsworks.ai/2.3.0-SNAPSHOT/generated/feature_validation/
https://step.esa.int/main/toolboxes/snap/
https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://hub.docker.com/r/atavares/esa-snap
https://gdal.org/
https://pypi.org/project/GDAL/
https://docs.hopsworks.ai/latest/generated/tags/#tag-schemas

