
 
 

ExtremeEarth 

H2020 - 825258 

Deliverable 

D2.4 

Evaluation report on  

Food Security use case output products 

 

 

Daniel Marinelli, Giulio Weikmann, Claudia Paris, Lorenzo 

Bruzzone 

 

 



                                             H2020-825258 

 

Evaluation report on Food Security use case output products, D2.4 

2 

 

31/12/2021 

 

 

Status: Final 

Scheduled Delivery Date: 31/12/2021 

Executive Summary 

ExtremeEarth aims to advance the state of the art by developing ad-hoc distributed deep 

learning architectures tailored to the peculiar properties of Sentinel data. The information 

provided by the Copernicus Satellite Data will be used for deriving information by focusing 

the attention on the following use cases: 

● Food Security Use Case: aims at the assessment of water availability for irrigation by 

combining a long time series of Sentinel 2 multispectral images with crop growth 

modelling to provide water availability. The deep learning architectures trained on 

Sentinel 2 data will generate crop type and crop boundaries maps; 

● Polar Use Case: exploits a long time series of Sentinel 1 SAR images to develop 

processing architectures and algorithms to cope with the extreme analytics and big 

data challenges associated with sea ice monitoring. 

In this document, we focus the attention on the Food Security Use Case and in particular on 

the WP2 whose main aim was the definition of a deep learning architecture for multi-year 

crop type classification. The document presents the final evaluation report of the activities.  

The structure of the document is the following. Section 1 recalls the objectives and user 

requirements of the use case. In Section 2 we describe the main activities carried out during 

the project which are: i) the generation of the large training database; ii) the definition of the 

deep architecture. Section 3 describes the training of the architecture and its implementation 

of the cloud computing platforms. Finally, section 4 presents the validation results and 

analyzes the outcome of the project activities in terms of the objectives and user 

requirements. 
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1. User Requirements and Objectives 

The main objective of WP2 is the development of deep learning techniques for the 

computation of extreme analytics over big Copernicus data. In particular, the aim of the food 

security use case is to assess water availability and irrigation by combining crop type maps 

generated with big EO data and crop growth models. In this context, WP2 is aimed at 

providing a scalable deep learning architecture for the generation of crop type maps. 

1.1. User Requirements  

According to deliverable D4.1 [1], the user request can be summarized in these requirements: 

(1) the water availability, (2) the crop condition, and (3) irrigation recommendation. This is to 

be provided at a high spatial resolution (i.e., the Sentinel 2 based crop products are required 

at 10m resolution) and at high temporal resolution (i.e., weekly based). Such products are 

generated by the physically based agro-hydrological PROMET model which requires as input 

a crop-type map. According to the user and PROMET requirements, the implemented deep 

learning architecture deployed for the Food Security Use case must have these 

characteristics: 

● The production of High Resolution (HR) yearly crop type and crop boundary maps (i.e., 

10 m spatial resolution). 

● The production of crop type maps having a detailed classification scheme tailored to 

the need of PROMET (i.e., the crop type information used in the simulations of the  

agro-hydrological model).  

● Differentiation of crop types along the common farming practice in Europe, e.g. 

differentiation of winter- and summer wheat 

● The production of multi-year crop type maps to study the impact of climate change / 

the season by season changes from farming practice on the considered crop 

parameters (e.g., photosynthesis, evapotranspiration, soil moisture, biomass increase, 

phenological development, and crop water stress). 

1.2. Objectives 

According to these requirements, the objectives of the Food Security part for WP2 are: 

● the generation of a large training database with classes tailored to the PROMET 
requirements. 

● The design and implementation of a Deep Learning architecture capable of exploiting 
Sentinel-2 dense time series to produce multi-year crop type maps. 



                                             H2020-825258 

 

Evaluation report on Food Security use case output products, D2.4 

12 

 

In the context of the ExtremeEarth project, a key aspect is the impact that the products and 

architecture developed can have on the research community and potential final user. Here 

we recall the most relevant MIMP for the Food Security Use Case: 

● MIMP 1.3: Full automation of workflows using processing chains and data sets from 
both TEPs for the Food Security use case. 

● MIMP 2.5: The deep learning architectures running on Hopsworks are trained with 
millions of training data samples in a few hours compared with days of training with 
current approaches. 

● MIMP 3.1: The ExtremeEarth software stack (EO processing and classification) 
deployed on the Food Security TEP and running on DIAS. 

These focus on the availability and accessibility of the products and processing chain to the 

user and exploitation of cloud computing platforms for faster architecture training and 

processing.  

2. Project Activities 

2.1. Large Database Generation 

To perform a reliable training, millions of annotated samples are required. While such large 

databases are typically available in different fields such as computer vision, this is not the case 

of remote sensing where the collection of in-situ data at such a scale is not feasible. 

Accordingly, in the context of the Food Security Use Case UNITN generated a large training 

database made up of crop type samples leveraging on existing Austrian crop type maps 

available at the country level, selected due to their rich classification scheme. Here we provide 

a brief description of the generation process although more details can be found in [2] and 

deliverable D2.1 [3]. 

The activity has been composed by two main steps: 

1. map legend analysis and conversion. 

2. database generation. 

2.1.1. Map legend analysis and conversion 

The first step was aimed at the selection of only classes that can be discriminated using the 

proposed multitemporal multispectral information provided by the time series of Sentinel 2 

images. Indeed, since the used Austrian crop map (composed by 212 classes) is based on the 

farmer declarations, the legend may include classes that are undistinguishable using the 

available spectral and temporal information, leading to poor performances. Accordingly, the 

map has been analyzed searching for problematic cases such as: 
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● Double cultivations per crop (e. g. Summer fruit/Field Vegetables); 

● Unclear Statement (e. g. Other surfaces protected cultivation); 

● Strong semantic aggregation of natural classes (e. g., other agricultural crop land). 

To address these cases, VISTA and UNITN revised the legend to: 

● discard the ambiguous classes. 

● detect the cultivations of interest. 

● define a proper conversion between the map legend and the desired legend. 

● dissolve linguistic overlaps, since original information was labeled in German 

Table 1 contains the resulting legend with the 15 main cultivations required by VISTA. 
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 ID Class Name Austrian Map Legend 

  1 Legumes Beans; Lentils; 

   2 Grassland Alpine Meadow; Temporary Grassland; Permanent Pasture; Hay Land 

  3 Maize 
Maize Corn-Cob-Mix; Silage Maize; Green Maize; Grain Maize; Maize; 
Sugar Maize; Maize Cultivation 

  4 Potato 
Early Potato; Fodder Potato; Seed Potato; Ware industrial Potato; 
Ware Potato; Farina industrial Potato; 

  5 Sunflower Sunflower; 

  6 Soy Soybean; 

  7 Winter barley Winter Barley; 

 8 Winter Caraway Winter Caraway; 

  9 Rye Green Prunning Rye; Winter Rye; 

  10 Rapeseed Summer Rape; Winter Rape; 

  11 Beet Winter Sugar Beet; Sugar Beet; Fodderbeet; 

  12 Spring Cereals Spring Oat, Spring Barley, Spring Wheat 

  13 Winter wheat Winter Triticale; Winter Wheat; 

 14 Winter Triticale Winter Triticale 
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  15 Permanent plantations Fruit Trees; Berries; Vineyards; Hop 

Table 1 . The map legend conversion of the Austrian Crop Type Map in the 15 main cultivations required by VISTA. 

 

2.1.2. Database generation 

 
Figure 1 System architecture used to extract the weak training set from the Austrian crop type map. 

The aim of this step was to exploit the publicly available crop type maps to generate the large 

training database. The used maps are the Integrated Administration and Control System 

(IACS) 1 maps published for selected countries of the EU)., i.e., the INVEKOS maps for Austria. 

While these maps are typically accurate, their use requires some careful considerations to 

select only reliable samples. We identified three main issues: 

● samples may be mislabeled or be related to outdated information. 

● Since the maps are generated yearly, the indicated crop type may not correspond to 

the real cultivation for the whole year due to the crop rotation practice. 

● Samples associated with the wrong labels due to the polygon spatial aggregation. 

According to this analysis, UNITN defined and developed an automatic system architecture 

based on recurrent deep neural networks which aims at selecting only the labelled samples 

having a high probability of being correctly labeled (i.e., reliable samples). Figure 1 shows the 

proposed system architecture. First, a time-series optical harmonization spatially and 

temporally harmonizes the irregular time-series obtaining a 12 monthly composites, covering 

a whole season, e.g. September to August. This simplifies the following step as it guarantees 

 
1 https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/financing-

cap/financial-assurance/managing-payments_en 

https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/financing-cap/financial-assurance/managing-payments_en
https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/financing-cap/financial-assurance/managing-payments_en
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time-series of equal length and strongly reduces the impact of cloud coverage. Then, the crop 

type map is used to generate an initial weak training set by means of a stratified random 

sampling. This is to select for each class a number of samples that is proportional to the 

presence of such class in the crop map. This is a critical step to obtain a balanced 

representation. The weak set is then used to train Long Short-Term Memory (LSTM) recurrent 

neural network which generates the crop label and its uncertainty (i.e., posterior probability) 

for each pixel. Finally, these products are used together with the original crop type map to 

generate the final reliable training set. Two criteria are considered for the selection of the 

final set: 

● Intersection of the original thematic product with the generated map to select only 

samples belonging to areas of agreement. 

● Selection of the samples having the highest confidence classification (i.e., high posterior). 

The result of these steps is the million labeled sample TimeSen2Crop training database which 

is publicly available online [4]. 

2.2. Architecture Definition 

 

Figure 2 Implementation of the multitemporal deep learning model defined for the Food Security Use Case. 

2.2.1. Single year crop type mapping 

Crop type classification using remote sensing data is a challenging task especially with 

multispectral data where spectral information is not sufficient at the single date to 

discriminate the different crops. Indeed, one of the key discriminants is the phenological 
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behavior of the different crops during the year, which is peculiar to each specific crop type.  

Such information can be captured by the time series of Sentinel 2 images to obtain accurate 

classification results. Accordingly, UNITN designed and developed a Deep Learning 

architecture which is based on the LSTM architecture. This model has been selected due to 

its internal feedback connections that are designed to model sequential data exploiting 

previous observations to analyze the current one [6]. Figure 2 shows the implementation of 

the deep learning architecture that takes as input: 

● the 1 million labeled sample TimeSen2Crop database for the network training. 

● the harmonized time series of Sentinel 2 composites. 

It generates as output the crop type map that provides the crop label at the pixel level. Note 

that here a multilayer architecture is used in order to better model the time-series 

information. In greater detail, the model used is a Long-Short Term Memory (LSTM) made up 

of three layers having 200, 125 and 100 hidden units for the first, second and third layer, 

respectively, a fully connected layer and a softmax layer which provides the classification 

posteriors, which are converted into the classification result at pixel level. Additional details 

can be found in the Deliverable 2.6 [5]. 
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2.2.2. Multi year  crop type mapping 

 

Figure 3 Workflow of the proposed system architecture implemented to generate annual crop type and crop boundaries 
maps at high spatial resolution. 

To be effective in a real scenario, it is important that the network can be used to generate 

crop types maps also for different years with respect to the one on which it has been trained. 

Indeed, it is not reasonable to assume that a new model can be trained from scratch every 

year. However, due to changes in the image acquisition conditions, the crop phenology and 

the crop rotation practice, different years will show a significant variation of the class 

statistical distributions. Crop seasons in farming practice are not limited to the September to 

August period and can also be set outside this logic. This can lead to a strong decrease of 

performance if the model is applied to a different year without any modification [7]. To 

mitigate this issue, we exploit the fine-tuning strategy which is widely used to adapt a pre-

trained network to a new target case using a small dataset [8]. This is done by freezing most 

of the layers of the network and training only the latest thus strongly reducing the number of 

parameters to be trained. Figure 3 shows the proposed multi-year crop type mapping 

architecture. Additional details can be found in the Deliverable 2.6 [5]. 
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3. Training and Implementation of the Deep Architecture 

The proposed architecture has been developed and trained on the distributed computing 

Hopsworks platform2  while the complete processing chain is implemented on the Food 

Security TEP3.  

3.1. Architecture Training 

The proposed architecture has been trained on the Hopswork platform. Hopsworks is an 

open-source platform for the development of machine learning and deep learning models.   

The training has been performed according to a distributed strategy to distribute the 

workload across multiple workers each having one GPU. The network has been trained 

considering both one GPU (i.e., one worker) and two GPUs. The training considering two GPUs 

is considerably faster than the single-worker training. Indeed, using a single GPU, the training 

was completed in ~1560 mins, while using two GPUs the training required ~910 mins, ca. 58% 

of the time (Table 2). Note that the distributed strategy can be easily scaled with no changes 

to the code allowing for the use of more GPUs thus further reducing the training time. Figure 

4 shows the performance of the training, performed on the Hopswork according to a 

distributed strategy, in terms of epoch accuracy and epoch loss. 

  

(a) (b) 
Figure 4 Training performance plots provided by the Hopsworks platform in terms of: (a) epoch accuracy, and (b) epoch 
loss. 

 

 
2 https://www.hopsworks.ai/ 
3 https://foodsecurity-tep.net/ 

https://www.hopsworks.ai/
https://foodsecurity-tep.net/
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3.2. Full Processing Chain Implementation 

The entire processing is implemented on the Food Security TEP. The FS TEP Platform provides 

easy access to EO data and product generation to both experts and non expert users with a 

focus on agriculture and aquaculture applications. It allows for the massive processing of big 

data at the regional and national level. Accordingly, it has been used to provide the trained 

architecture and the complete processing chain to the final user. To this end, we developed a set 

of services that can be accessed using the website Food Security TEP interface. Note that the basic 

pre-processing of the time series, including radiometric correction, cloud detection and 

generation of the Bottom of Atmosphere Reflectance (RefBOA) and Leaf Area Index (LAI) images, 

using VISTAs sophisticated processors on the TEP, has been performed using the available 

platform services during the project. Figure 5 shows how the pipeline has been implemented on 

the Food Security TEP. Since also the classification/inference to generate the crop map is 

performed on the TEP, the model trained on the Hopswork is retrieved using the Hops API 4. 

Additionally, the inference is also available on the Hopsworks platform. The services run on 

Ubuntu OS in a virtualized environment defined by a docker image. Table 2 shows the average 

classification times for one tile and for the whole study area (36 tiles). Note that this is only an 

average as the classification time varies from tile to tile and depends on the number of pixels to 

be classified (i.e., crop pixels). 

 

Figure 5 Processing Pipeline implemented on the FS TEP and the Hopswork. 

 

 
4 https://hops-py.logicalclocks.com/ 

https://hops-py.logicalclocks.com/
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 Training Classification 

1 GPU 2 GPUs 1 Tile  Whole area (36 Tiles) 

Time [Minutes] 1560 910 ~120  ~4320 

Table 2. Training and classification times of the proposed implementation. 

 

  

4. Performance Evaluation and Objective Compliance 

4.1. Study Area 

The considered study area is in the Danube catchment, Europe's second largest river basin, 
with a total area of 801,463 km2. 36 Sentinel 2 tiles covering Austria, Moravia, Hungary, 
Slovakia and part of Germany were considered. Each tile covers an area of 100 x 100 km. 
Figure 12 shows the considered area by presenting the 36 Sentinel 2 tiles considered. The 
different geographic regions, from the cold and humid Alps to the warm and more arid 
regions in the East, is a perfect example of the challenges faced by agriculture and the way 
big data EO analysis can offer a unique insight into large scale processes and challenges. Initial 
plans or additional coverage of wider extent of the training area had to be modified due to 
unavailability of appropriate ground truth data. 

 

Figure 6 Study area located in the Danube Catchment made up 36 Sentinel 2 belonging to three spatial reference systems, 
namely EPSG 32632, 32633 and 32634. 
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The Sentinel 2 data acquired between September 1, 2017 and September 1, 2018 were collected 

by discarding only the data having cloud coverage higher than 80%. This condition allows us to 

model the whole agronomic year (i.e., the period from one year’s harvest to the next one for 

agricultural commodities). To perform the multi-year crop type mapping, we also considered the 

Sentinel 2 data acquired between September 1, 2018 and September 1, 2019 as well as the data 

acquired between September 1, 2019 and September 1, 2020. The data were downloaded after 

the preprocessing from the Food Security Thematic Exploitation Platform (TEP) using an API 

access.  The results of Sentinel 2 images made up of nine spectral bands are provided at 10 m 

spatial resolution, each having a size of 10980x10980 pixels. In particular, the blue (B2 - 490 nm), 

green (B3 - 560 nm), red (B4 – 665 nm), the four vegetation red edges (B5 - 705 nm, B6 – 740 nm, 

B7 - 0.783 nm and B8A - 865 nm) and the two short wave infrared (SWIR) (B11 - 1610 nm and B12 

- 2190 nm) channels were considered. Band 8 was discarded because of its coarser spectral 

resolution compared to band 8A. The data had been atmospherically corrected by VISTAs Image 

Processing software VIA, using the radiative transfer model MODTRAN [11] and the spectral 

bands are provided at the highest spatial resolution of Sentinel 2, i.e., 10 m. 

 

4.1.1. Large Training Database and Validation 

The result of the database generation is TimeSen2Crop [2]. The dataset represents 15 crop 

type classes with samples distributed across 15 Sentinel 2 tiles thus representing a large 

geographical area. The database also contains samples extracted from the 33UVP tile for the 

successive year, to test the effectiveness of the network on a different agronomic year. Figure 

7 shows the class distribution highlighting crop types having severely imbalanced prior 

probabilities. 
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Figure 7. Sample distribution in the 16 classes across the covered Sentinel 2 tiles 

Note that while the training has been performed using the TimeSen2Crop dataset, thus 

considering only the Austrian tiles, the validation for the 2017-2018 agronomic year has been 

performed considering all the 36 tiles of using the Land Use and Cover Area frame Statistical 

Survey (LUCAS)5 as reference. This is a very important aspect as it allows us to test the 

generalization capabilities of the trained network. Figure 8 shows the LUCAS points used as 

reference for validation. 

 
5 https://land.copernicus.eu/imagery-in-situ/lucas 
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Figure 8 LUCAS reference points overlayed on the study area. 

 

For the multi year mapping, the architecture update (fine tuning) and validation has been 

performed considering only the Austrian tiles since multi year reference data (INVEKOS) are 

available only for such areas. In detail, the selection of the validation samples has been 

performed using patches of images spatially uncorrelated from the patches used for the fine 

tuning of the architecture. 
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Figure 9 Qualitative examples of the fine tuning and validation samples selection for the muti year mapping. 

 

4.1.2. Data Volume 

 RefBOA LAITif 
Monthly 

Composites 
Inference 

Crop Type 
Maps 

Total 

Single Scene 60 GB/tile 7 GB/tile 24 GB/tile 350 MB/tile 10 MB 91.36 GB 
Single Year (36 tile) 2.16 TB 252 GB 864 GB 12.6 GB 360 MB 3.28 TB 
Multi Year (108 tiles) 6.5 TB 756 GB 2.5 TB 37.8 GB 1.08 GB 9.79 TB 

Table 3. Estimated Data Volume 

Table 3 shows the estimated data volumes for both the single and multi-year mapping. The 

table shows that in the context of the food security use case we analyzed big data. This was 

possible also due to the use of online computing platforms such as the Hopsworks and the 

Food Security TEP. Another aspect shown in the table is the significant advantage of the 

monthly composite that allows for almost 3x reduction of the initial data volume. 
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4.2. Numerical Results 

4.2.1. Single Year Mapping 

 

  
TimeSen2Crop 

TestSet 
LUCAS 

  #Samples F1% #Samples F1% 

 Legumes 2031 94.01 - - 

 Grassland 15080 98.78 2832 92.72 

 Maize 15001 99.57 1661 95.94 

 Potato 4015 95.90 88 72.20 

 Sunflower 240 89.28 140 85.82 

 Soy 10712 99.05 131 84.44 

 Barley 15001 97.89 817 74.75 

 Winter Caraway 577 95.12 - - 

 Rye 9701 86.04 142 40.38 

 Rapeseed 5086 99.59 733 92.03 

 Beet 4212 99.44 181 92.05 

 Spring Cereals 11987 96.40 - - 

 Winter Wheat 15001 98.01 1705 80.98 

 Triticale 14363 86.15 117 18.32 

 Perm. Plantations 411 81.11 170 61.49 

 OA%  95.78  85.20 

 Median F1  96.40  82.71 

Table 4. Numerical results obtained with the TimeSen2Crop test set (Austria) and the LUCAS database (Danube basin) for 
the 2017-2018 agronomic year. 

 

Table 4 shows the numerical results obtained on the 36 tiles of the Danube basin for the 2017-

2018 year. The results showed that the proposed architecture achieved good performances 

both in terms of Overall Accuracy (OA) and median F score (F1). This is true for the results on 

the TimeSen2Crop and LUCAS datasets. In detail, the TimeSen2Crop test reached an accuracy 

of 95.78% while the LUCAS test of 85.2%. This proves the generalization capabilities of the 

proposed architecture that, while trained on the Austrian tiles, performs well on the whole 
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Danube basin which is characterized by significantly different geographic regions. Focusing 

on individual classes, the two tests reached similar results with the most significant decrease 

of performances associated with the rye, which is confused with the wheat-rye hybrid 

triticale, and permanent plantations classes. Note that these are mostly minority classes and 

that the permanent plantation class is characterized by a high variability across the study area. 

A qualitative analysis of the crop type map obtained on a local area is shown in Figure 10. 

Note that, even if the architecture proposed performs a pixel-wise classification, the resulting 

product is consistent. The methodologies have been extended to the whole Danube basin and 

the complete crop type maps generated can be seen in Figure 11.  

 

Figure 10. Comparison of a Sentinel 2 acquisition of 4th August 2018 and the crop type map generated 



                                             H2020-825258 

 

Evaluation report on Food Security use case output products, D2.4 

28 

 

 

Figure 11. Superimposition of the crop type map generated in the year 2018 on the Danube basin. 

 

4.2.2. Multi Year Mapping  

     

  2018 2019 2020 

  
 

No Adaptation 
FT 

(15000 
samples) 

No 
Adaptation 

FT 
(15000 

samples) 

  F1% F1% F1% F1% F1% 

  Legumes 94.01 73.16 83.63 69.45 81.69 

 Grassland 98.78 67.90 76.38 65.44 79.75 

  Maize 99.57 87.22 91.83 82.39 85.66 

  Potato 95.90 44.71 61.24 55.28 72.10 

 Sunflower 89.28 49.47 73.47 42.77 76.40 

  Soy 99.05 80.04 87.36 75.16 86.49 

 Barley 97.89 42.56 88.84 19.51 83.58 

 Winter Caraway 95.12 59.48 72.06 28.18 71.06 
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 Rye 86.04 49.23 67.73 49.94 60.96 

 Rapeseed 99.59 93.26 96.96 92.11 95.80 

 Beet 99.44 75.77 86.69 67.77 90.35 

 Spring Cereals 96.40 62.50 80.46 64.99 79.74 

 Winter Wheat 98.01 53.72 76.24 43.92 69.81 

 Triticale 86.15 34.75 61.70 33.09 59.37 

 Perm. Plantations 81.11 56.57 68.45 58.72 82.52 

 OA% 95.78 63.25 81.29 60.07 78.79 

 Median F1%  96.40 61.15 81.99 61.26 80.65 

 

Table 5. Numerical results obtained for the three agronomic years. 

 

Table 5 shows the multi-year mapping numerical results for the 2019 and 2020 years 

compared with the 2018 (the year on which the network has been trained). The results for 

2019 and 2020 are shown for both the 2018 network with no adaptation and with the fine 

tuning. The median F1 and overall accuracy shows a significant improvement with respect to 

the case where no adaptation is employed. This shows that proposed architecture can be 

applied on time series with different temporal and radiometric characteristics with respect to 

the one used for training. Moreover, the network can be effectively adapted to the unique 

conditions (e.g., due to crop rotation practices) of each year, as can be seen in Figure 12. The 

numerical results show relatively stable results from 2019 to 2020 proving that the fine tuning 

is effective even when the time interval from the year of training becomes significant. 

 

Figure 12. Crop type maps produced in the three target years considered. 
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4.2.3. “Invekos” Validation 

To further validate the single and multi-year results, we extended the Austrian validation to 

the Austrian tiles containing the biggest variety of crop types using the  INVEKOS maps, as 

reference (i.e., ‘33TWN’, ’33TXN’, ‘33UUP’, ‘33UVP’, ‘33UWP’, ‘33UWQ’, ‘33UXP’), thus 

discarding the Austrian tiles mainly composed by grassland. While it is true that the training 

database has been generated using the Invekos maps and thus this is not a fully uncorrelated 

validation, note that by considering all the different tiles and all the available pixels we are 

significantly expanding the test set. Table 6 shows the obtained numerical results. The results 

show that all the crop types are classified with good Overall Accuracy and Fscore on all the 

years. The proposed architecture can generalize well over neighboring tiles and can adapt 

well on the target years. Most importantly, we can see stable results across the different years 

confirming the results of Table 5. The most critical classes are Winter Caraway, Triticale and 

Rye, as discussed in the Single Year Mapping session. 

  Samples 

2018 

F1% 

2018 

Samples 

2019 

F1% 

2019 

Samples 

2020 

F1% 

2020   

 Legumes 571689 70.65 368639 63.18 340416 68.12 

 Grassland 51303200 89.71 15210298 89.60 13744181 85.62 

 Maize 23516291 93.93 21531831 94.82 19950607 94.79 

 Potato 2002816 77.11 1752755 78.83 1720180 82.48 

 Sunflower 1993073 79.11 1682262 70.89 1958104 69.70 

 Soy 5618872 86.40 5418531 88.84 5472900 87.47 

 Barley 7751633 87.73 7599399 91.67 7409855 90.33 

 Winter Caraway 102898 52.40 59824 33.51 67529 34.36 

 Rye 3501974 64.64 2748134 67.93 2520765 63.76 

 Rapeseed 3810026 95.61 3228564 95.84 2888543 95.71 

 Beet 3254119 92.73 2521550 94.81 2450972 92.60 

 Spring Cereals 7866020 82.53 4697081 85.41 4182017 85.04 

 Winter Wheat 24517683 89.14 20937790 89.74 20314358 86.68 

 Triticale 3983221 50.91 3196163 56.23 2834587 48.40 

 Perm. Plantations 5342051 61.77 4186860 67.07 4570997 59.39 

 OA% - 88.99 - 89.41 - 86.20 

 Median F1 - 85.65 - 86.73 - 84.80 

Table 6. Numerical results obtained for the three agronomic years using the Invekos maps as validation. 
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4.3. Objectives Compliance 

In this section we analyze the outcomes of the activities of UNITN for the Food Security Use 

case (WP2) in terms of objectives, the related user requirements, and quality of the generated 

products. In Section 1, we revised the main objectives and user requirements.  

The first objective was the definition of the training database. This objective has been 

achieved with the generation of the publicly available TimeSen2Crop dataset. The dataset 

represents 16 crop types, and it is composed of a million of labeled samples collected over 

the entirety of Austria. Most importantly, the samples are collected from spatially disjoint 

tiles to generate the training, test and validation sets while guaranteeing statistical 

independence. The classes have been tailored to the spectral/temporal properties of the 

Sentinel 2 time-series to guarantee an effective training and to the simulation / PROMET 

requirements so that the resulting crop type maps can be effectively used by the partner 

VISTA to generate the water demand analysis and e.g. irrigation recommendation products. 

The second objective was the design and implementation of a deep learning architecture to 

generate crop type maps. This objective has been achieved with the proposed network that 

has several important properties. Indeed, due to the use of Sentinel 2 images, the network 

generates crop type maps at the required geometrical details (i.e., 10m) defined by the user 

requirements. The network can distinguish the 15 crop types that are required by the 

PROMET model thus generating products that can be effectively used in the following steps 

(e.g., water demand maps generation). Moreover, according to the user requirement, the 

proposed network can generate multi-year crop type maps, for three consecutive years, 

namely 2018, 2019 and 2020. This is a critical aspect as it allows us to model the temporal 

changes related both to the crop rotation practice and climate. 

This analysis showed that all the objectives and related user requirements for the Food 

Security Use Case part of WP2 have been achieved. In terms of product and architecture 

accessibility, the generated database is freely available while all the services can be accessed 

by means of the Food Security TEP. The mechanisms of using Hopsworks based models for 

EO classifications had also been successfully implemented on the Food Security TEP. 

 

5. Publication Lists 
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