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Executive Summary 

ExtremeEarth aims to advance the state-of-the-art by developing ad-hoc distributed deep 
learning architectures tailored to the specific properties of Copernicus Sentinel satellite data. 
The information provided by the satellite data will be used for deriving information by 
focusing the attention on the following use cases:  

● Food Security Use Case: aims at the assessment of water availability for fertilization 
and irrigation by combining a long time series of Sentinel 2 multispectral images with 
crop growth modelling to provide water availability. The deep learning architectures 
trained on Sentinel 2 data will generate crop type and crop boundaries maps;  

● Polar Use Case: exploits a long time series of Sentinel 1 synthetic aperture radar (SAR) 
images to develop processing architectures and algorithms to cope with the extreme 
analytics and big data challenges associated with sea ice monitoring.  

This document focuses on WP2 tasks related to the Polar Use Case scenario, with emphasis 
on the design and analysis of Deep Learning (DL) architectures for sea ice monitoring.  The 
goals of the work were to exploit the free and open availability of SAR images from Sentinel 1 
A & B satellites to explore the capabilities of DL architectures for sea ice classification and 
evaluate their potential of coping with the extreme analytics and big data challenges 
associated with the Copernicus data.  

It is noted that sea ice monitoring here refers to ice type classification, which is about 
segmenting SAR sea ice scenes into areas labelled as a certain ice type. Two classification tasks 
have been explored: i) The two-class problem, which aims at separating between sea ice and 
open water, and ii) Multiple class-problem, which aims at classifying the scene into multiple 
ice types and water classes.  This document presents a detailed evaluation of two scenarios.   

The next section describes the results of the requirement analysis for the Polar Use Case. To 
put the work and its contribution into a wider context, Section 2 gives a brief state-of-the-art 
discussion of the research area and the challenges related to automatic sea ice classification 
from SAR.  In Section 3, we describe the main activities carried out during the project. These 
are: i) the generation of the large training database; ii) the definition of the DL architectures 
studied; iii) the evaluation of the inference results by applying the previous DL architectures. 
Section 4 describes the training of the architectures and its implementation on Hopsworks 
and the PolarTEP. Moreover, Section 5 briefly summarizes some auxiliary investigations which 
have been conducted within the project. Finally, a summary of the project is concluded in 
terms of the objectives and user requirements in section 6.  
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1 User requirements 
Deliverable D5.1 “The Polar Use Case - User requirement analysis” analyzed the user 
requirements for the Polar Use Case and concluded that “the types of satellite data needed 
varied with the type of user being supported: transportation and other tactical information 
needed high resolution Synthetic Aperture Radar (SAR) data, whilst climatological studies 
found low resolution Passive Microwave (PMW) data is sufficient.” Mariners need information 
that can support navigation and safety in ice infested waters. In this regard, detailed and 
reliably accurate information about the location of the ice edge, location of leads and ridges, 
areas of (thin) first year ice and areas of multi-year ice are crucial information. Mariners also 
want to have short-term forecasts about the development of ice conditions in the area they 
are located and heading. However, forecast predictions have not been considered within the 
scope of the ExtremeEarth project. 

Focusing on the mariners needs, the research on sea ice monitoring has addressed two 
classification problems: 

●   Binary sea ice-versus-water classification – High-resolution ice masks can give 
information about many of the parameters requested above, such as location of 
ice edge location, location of leads, and they may also be used to generate large-
scale ice concentration maps. 

●   Multi-class ice type classification - This addresses the more general classification 
problem of creating multiple ice type maps, identifying first and multi-year ice, 
thin ice, deformed ice, ridges and leads.  

Our main focus has been on the first task, i. e. binary ice-versus-water classification, and the 
work includes analysis of several deep learning architectures. However, the extension from 
binary classification to multi-class classification has also been addressed. 

It is noted that for climate monitoring, low-resolution ice concentration maps can be 
generated from the high-resolution SAR maps or obtained from passive microwave 
radiometer observations. In fact, the combined use of both these two sensors would also be 
beneficial. Such data analysis has not been conducted in our study. 

In the generation of a training database and the development of deep learning architectures 
for the Polar Use Case, we have used high-resolution mapping from SAR sensors, and the 
Sentinel 1 (S1) SAR data has been the primary source of data. However, auxiliary data from 
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other high-resolution SAR satellites (TerraSAR-X, RADARSAT-2) and/or collocated optical data 
(Sentinel 2 & 3, Landsat) have been used to support the creation of the training database. 

2 Background, Challenges, and Workflow 
2.1 Background  
National sea ice services have the responsibility to produce operational sea ice charts, often 
on a daily basis. They use Synthetic Aperture Radar (SAR) data as a primary source of 
information for the generation of these sea ice products. At present, none of the ice services 
has reported using automatic classification algorithms operationally throughout the year. All 
algorithms still require some form of human guidance. The ExtremeEarth project aims to 
explore if the recent developments in the Artificial Intelligence (AI) and Deep Learning (DL) 
domain can bring progress in sea ice monitoring from SAR, and advance ice charting towards 
more automated services. 

Current satellite borne SAR systems operate in the microwave area of the electromagnetic 
(EM) spectrum, with carrier frequencies in the range 1 - 10 GHz. They are of invaluable 
importance because their signals are independent of light conditions and can support ice 
services around the clock, seven days a week, all year round. SARs are multi-channel systems 
in the sense that they can transmit and receive EM signals at different polarization states.  
This multi-dimensionality increases their information-providing capabilities. 

On the other hand, the characteristics of SAR echoes from an ice surface are very sensitive to 
the imaging geometry and to properties of the sea ice and surface topography. So, even if 
SAR images can provide ice information, the dynamics and complexity of sea ice makes the 
SAR scenes difficult to interpret. This is especially the case during the summer season, when 
the snow on the ice melts and gets wet, and the radar signals have less penetration into the 
ice column.  Summer is also the period of the year when vessel activity increases in the polar 
regions, and there is increased demand for accurate ice mapping. Hence, even if there is a 
substantial number of classification and segmentation algorithms around, none of them are 
sufficiently robust to support automatic operational sea ice charting, which is the reason why 
currently sea ice charts are made manually by analysts at the service centers. Automatization 
of the segmentation and classification processes will make sea ice map production more 
efficient, and the maps will be less subjective and probably more detailed than those made 
by the ice experts. Consequently, the effort to improve automatic segmentation and 
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classification approaches for ice charting and monitoring is highly important. We briefly 
mention a few challenges that must be considered in this regard. 

SAR scattering from sea ice: A SAR is a side-looking imaging radar. For mono-static systems, 
the imaging process relies on the transmitted signal being backscattered towards the sensor 
by surface scattering or volume scattering mechanisms. The strength of the backscattered 
signals depends on both system and medium parameters. The system parameters include 
frequency, polarization, incidence angle, and noise characteristics.  The medium properties 
are the surface roughness associated with the upper ice surface or horizontal layers, or 
permittivity contrasts within the bulk of the medium. These contrasts are typically attributed 
to the brine or air being trapped between crystalline ice. Snow on the ice, and the properties 
of snow on the ice also affects the strength and characteristics of the radar backscatter. 

In conclusion, SAR returns from sea ice are intrinsically complex and contain multiple 
ambiguities. Even the binary discrimination between sea ice and water, which in many cases 
is trivial, can be awfully difficult, because wind flow and turbulence over water may create 
signal patterns that look like sea ice. Hence, for sea ice classification with DL networks, 
generating training datasets that are large and diverse enough to cover all possible situations 
is a prerequisite. This is both a tedious and difficult task, but probably is equally important as 
finding an optimal network architecture. 

2.2 Challenges 
The European Union's Copernicus program now provides Sentinel-1 SAR products, free of 
charge and on a regular basis, for all users, with near-real time (NRT) access less than 3 hours 
for operational users. Sea ice monitoring in the Arctic primarily uses the Sentinel-1 Extra Wide 
(S-1 EW) mode, acquired with dual-polarization channels (HH+HV). The SAR data used for 
training and validation in the Extreme Earth project is S-1 EW Level-1 Ground Range Detected 
(GRD) products, which is available at a pixel-spacing of 40 x 40 m (ground resolution of 
approximately 80 x 80 m). The swath of a scene has a width of 400 km, corresponding to 
incidence angles (IA) ranging from 18.9 – 47o. The swath is composed of 5 sub-swaths.  

Incidence angle dependency: The IA dependent intensity gradient is a consequence of the 
side-looking geometry of spaceborne SAR systems where the local IA varies significantly from 
the near to the far range view.  This strongly affects the resulting image intensity values and 
is a fundamental physical effect related to the radar illumination geometry and the scattering 
being dependent upon the physical properties of the sea ice surface and volume. The gradient 
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is varying with ice type, and it is also different for sea ice and water. This is illustrated  in 
Figure 2-2-1. 

 

 

Figure 2-2-1: Basic incidence angle geometry and intensity variation for 3 classes: water, first-year ice (FYI) and multi-year ice 
(MYI) (Courtesy: Anthony Doulgeris). 

Seasonal changes: The seasonality has a large impact on the dielectric properties of sea ice 
and its snow cover and, therefore, on the intensities of the backscattered signals. In winter, a 
sea ice scene is largely dominated by surface scattering from young ice and volume scattering 
from the bubble structure in the upper layer of multi-year ice (Ulaby et al., 1986). The onset 
of melt changes the characteristics and the dielectric properties of the sea ice and snow, 
resulting in dramatic changes in the radar return from a given ice type. The discrimination 
between various ice types gets more difficult as is illustrated in Figure 2-2-2. Figure 2-2-2 
shows two S1 SAR scenes from the fast ice area at the east-coast of Greenland, before the 
onset of melting (left), and after (right). 

 

  
Figure 2-2-2: S1 SAR image of fast sea ice collected at pre-melt season (17.04.2018) in left panel, and melt-season 

(16.06.2018). (Courtesy: Nick Hughes) 
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Ambiguous scattering:  Backscattering from sea ice and water surfaces is caused by roughness 
and dielectric properties of the target surfaces. For the ocean, the primary scattering is caused 
by small-scale roughness (on the order of the size of the wavelength of the radar signal), and 
these are modulated by the larger waves. The small-scale roughness is connected to the wind 
in such a way that high wind and turbulence will give high backscatter with texture associated 
to random directions of the wind turbulence. Over sea ice, the scattering is more complex. 
Ice surfaces may be level or deformed, they may be dry or wet, they may be snow covered or 
bare. And there are incidence angle dependencies. All these effects make the SAR returns 
ambiguous in such a way that very different ice types may give the same signal properties, 
and even the separation between open water and sea ice may be difficult. This is illustrated 
in Figure 2-2-3. 

To mitigate this, recent generations of SAR starting with RADARSAT-2 and now continuing 
with Sentinel-1, have included a dual-polarization capability. The cross-polarization channel 
is less affected by the open water roughness, and provides improved discrimination between 
ice and water. However, this channel is affected by a lower signal-to-noise (SNR) ratio. 
 

 
Figure 2-2-3: Two HH-polarization S1 SAR from the marginal ice zone. 

Noise characteristics of Sentinel-1: SAR systems are affected by internal noise. This adds a 
structured but class independent intensity noise signal across the images, which is most 
prominent in the lower intensity HV or VH channels. This noise floor usually varies as a 
function of range (and thus IA) and is particularly pronounced with the five sub-swath 
assemblies of Terrain Observation with Progressive Scans SAR (TOPSAR) S1 EW imagery. The 
variable noise-floor may cause unwanted classification effects that are similar but separate 
from the IA dependency. 



                                             H2020-825258 

 

 

Evaluation report on Polar use case output products - version I, D2.5 
13 

 

It has proved difficult to efficiently filter out this noise component, which is partly because 
the spatial correlation properties of the noise are very similar to the spatial properties of 
speckle, a well-known phenomenon associated with coherent radar imaging. Figure 2-2-4 
provides an example of the noise pattern in a S1 EW-mode HV SAR scene (left), with the 
corresponding noise floor profile shown separately (right). 

 

Figure 2-2-4: An example of a noise HV SAR image, with corresponding noise floor profile on the right. 

2.3 Workflow and research topics 
The development of DL architectures for sea ice mapping from SAR data involves several 
important work tasks. These include generation of labelled training data, pre-processing, 
architecture design, interpretation and evaluation. As discussed in the section above, there 
are also several additional challenges connected to the use of S1 SAR data which also need to 
be addressed, and some of them have implications for the architecture design including 

● number of input layers, 

● patch-wise or pixel-wise classification, 

● number of output classes. 

In addition, we need to address how to pre-processing the data, how to alleviate the noise 
problem and the scarcity of training data. Figure 2-3-1 summarizes the workflow and research 
tasks that have been addressed by UiT in the ExtremeEarth project. 
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Figure 2-3-1: Illustratration of the workflow and research questions addressed by the UiT team. 

3 Training datasets and evaluation  
3.1 Training dataset generation 
In the training and evaluation of the DL models, we have used several datasets.  

UiT-dataset: This is a labelled training dataset generated from 31 S1 scenes acquired over ice-
infested waters north of Svalbard having a resolution of 40m x 40m. Each image has a size of 
around 800 MB, summing up to 24.8 GB. We labelled polygons from these scenes (See details 
on the training data generation in D2.1) using co-registered optical images (S2 and S3) with 
small time-gaps to the S1 acquisitions. The polygons were carefully manually labelled into 6 
classes (Lohse, 2020). The six classes were identified as; open water, leads with water/newly 
formed ice, brash ice/pancake ice, thin first year ice, thick level first year ice, and thick 
deformed ice (first or multi-year ice). These classes have been qualitatively described and 
defined in D2.1. Nonetheless, to perform water/sea ice classification, we grouped the first 
two classes into one group, labelled ‘water’, and gathered the other classes into a class 
labelled ‘sea ice’. Moreover, for each class and for a given set of patch sizes (see Table 3-1-1), 
we extracted all possible patches inside each polygon, with a stride of 10. Each patch input to 
the network contained HH, HV intensities, plus incidence angle. 

 

Table 3-1-1: Number of samples in each class 
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Met-dataset: For inference validation, i.e., to produce ice-water masks of unseen SAR scenes, 
we have used the “Met-dataset” from Danmarkshavn on the east coast of Greenland (Hughes 
and Amdal, 2020). This area was continuously monitored by key European Sentinel satellites 
during 2018. It has a wide variety of sea ice and iceberg conditions. The dataset consists of 12 
days, approximately monthly, throughout the year, covering winter and spring, summer melt, 
and autumn freeze-up. The presence of extensive (land) fast ice in the area ensures that 
classifications can be applied to additional dates.  

UiT-dataset 2: UiT has created a second dataset for the pixel-wise binary ice-water 
classification. This has been generated from 9 S1 SAR scenes over sea ice infested water in 
the Svalbard area. The images were classified into unlabeled classes using a segmentation 
algorithm, and thereafter carefully inspected by experts to assign the segments to the water 
and ice classes. The binary classified SAR scenes are subsequently used to randomly select an 
extensive number of patches of the required size to be used as training data for the pixel-wise 
classification network.  

3.2 Evaluation of patch-wise supervised classification strategies 

3.2.1 Patch-wise classification with VGG-16   
In this subsection, we give a performance evaluation of the VGG-16 architecture for sea ice 
classification from SAR images under different training strategies. These strategies include:  

(a) Training the VGG-16 network by transfer learning, where the pre-trained network is 
trained on the ImageNet dataset.  

(b) Training the VGG-16 network from scratch.  

(c) Training the VGG-16 network from scratch, with an augmented dataset.  

(d) Training the modified VGG-16 network from scratch considering the augmented dataset 
with a patch-size equal to 32 × 32.  

(e) Similar to (d) with a patch size of 20 × 20. 
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Based on these set-ups and the experimental analyses, we observed that the modified VGG-
16 network trained from scratch with the augmented data with patch-size of 32× 32 provides 
the highest accuracies. We used the augmentation strategy of Buslaev and co-authors 
(Buslaev et al.,2020). According to this strategy, we perform horizontal flip, rotation with 90 
degrees, blurring, and random changes to both brightness and contrast. The data 
augmentation technique aims to improve the robustness of the architecture by adding more 
variability to the training data and make the network more independent of changes in 
brightness and contrast. The overall dataset for different classes is indicated in Table 3-2-1-1. 

Table 3-2-1-1: Number of samples in each class for augmented dataset. Smallest possible patch size for VGG16 

  

We present the classification results related to the VGG-16 network with different training 
approaches in Table 3-2-1-2. As can be seen, when the network is trained by transfer learning, 
the validation accuracy is equal to 97.9%, whereas when the same network is trained from 
scratch, the accuracy is 99.5%.  

 
Figure 3-2-1-1: The overall architecture of the proposed method based on a modified version of VGG-16. We extract patches 
from these images and feed them to the network during the training process. 

 

Table 3-2-1-2: Performance comparison from previous deliverable D2.3. 
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This leads us to conclude that in the case of sea ice classification from SAR data, training the 
network from scratch with an augmented dataset enables better adjustment and learning of 
the sea ice characteristics. Transfer learning, with pre-training on ImageNet data, which is 
fundamentally different from SAR data, does not allow the same adaptation to the data and 
poorer generalization.  

The modified version of the VGG-16 model is obtained by reducing the number of max pooling 
layers. This also enables the size of the input patches to be reduced to 20 x 20. Moreover, by 
reducing the number of max pooling layers, the network better preserves the structure of the 
data and shows improved performance. 

We also performed a comparison with three other reference models to show the stability and 
robustness of the modified VGG-16 model for sea ice classification. These reference models 
are MobileNetV2, RestNet50, and DenseNet110. The performance of our model in 
comparison with these reference models is presented in Figure 3-2-1-2 in the form of 
validation accuracy as a function of the number of epochs. As can be seen, our model presents 
higher and more consistent validation accuracy. 
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Figure 3-2-1-2: Validation accuracy 

Inference evaluation of VGG-16 

Figure 3-2-1-3 shows some inference results. The first row shows four input images from the 
area north of Svalbard. In the same figure, the patch-wise results of the ad hoc Convolutional 
Neural Network (CNN) are presented in the second row, the results of the VGG-16 model 
trained with transfer learning are presented in the third row, the results of the VGG-16 model 
retrained from scratch without the augmented data are presented in the fourth row, the 
results of the VGG-16 model retrained from scratch with the augmented data are presented 
in the fifth row, and the results of the modified VGG-16 model trained from scratch with 
augmented data are presented in the sixth row. Areas consisting of water and sea ice are 
annotated in blue and white, respectively. For better visualization, we applied a land mask to 
detect land areas, which is indicated as the black regions in the images. We zoom in on parts 
of some images to highlight specific details. The classification results obtained with ad hoc 
CNN (second row) are not satisfactory. The classified images are severely affected by the 
banding additive noise pattern, as can be clearly seen in columns two and three. The VGG-16 
trained with transfer learning (third row) does not classify sea ice areas properly. In fact, open 
water and newly formed sea ice often have lower radar backscatter values in HV than HH 
channels. The HV intensity values are closer to the noise floor and therefore often have a 
lower signal-to-noise ratio, which explains the artifacts seen caused by noise patterns. In fact, 
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this noise pattern may lead to problems during the interpretation of sea ice maps because 
the noise corrupts the true backscattered signal from the sea ice region. 

 
Figure 3-2-1-3: Patch-wise results considering patch size equal to 32*32. The first row presents the original images in two-
bands. The second row presents results using ad-hoc CNN, the third row presents results using VGG-16 with transfer learning. 
The fourth row presents results using VGG-16 trained from scratch without augmentation. The fifth row presents results 
obtained using VGG-16 trained from scratch with augmented dataset. The sixth row presents the results of modified VGG-
16 trained from scratch considering patch size equal to 20 × 20. Ice is annotated in white, and water is annotated in blue 
color. For better visualization, we applied a land mask on the obtained images annotated in black. 

To further show the generalization performance of the CNN models for ice versus water 
classification, we also tested the models on images acquired from a different Arctic region, 
the area offshore of Danmarkshavn, East Greenland (76°46ʹ N, 18°40ʹ W), where the 
Norwegian Meteorological Institute provided vector polygon data representing manually 
interpreted sea ice areas (the Met-dataset). Figure 3-2-1-4 shows four of those images, 
corresponding to different months of the year. These include both the freezing and melting 
seasons and were then analyzed with the trained architectures. Figure 3-2-1-4 displays the 
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classification results corresponding to the modified VGG network, trained from scratch with 
data augmentation, using patch sizes of 32 × 32 and 20 × 20. 

  
Figure 3-2-1-4: Binary classification maps with modified VGG16 from D2.3 considering 32x32 and 20x20 patches. Water is 

blue, Ice is white, and Black is a land mask added after classification. 

As can be seen, the overall performance is good. It is also noticed that the results obtained 
with patch size equal to 32 × 32 are better than the results obtained with patch size equal to 
20 × 20. The larger patch-size seems to be less affected by the noise and therefore we 
conclude that a patch size equal to 32 × 32 is a better choice for Sentinel-1 SAR images 
corrupted by additive noise. Overall, our experimental analysis shows that the VGG-16, when 
trained from scratch with augmented data, presents very good classification results when 
trained in a supervised mode.  

3.2.2 Supervised patch-based learning of a 13-layers CNN with noise profiling         
In this section, we evaluate the performance of the trained 13-layers CNN model shown in 
Figure 3-2-2-1 using different combinations of input features. In our experiments, four 
different compositions of the input patches are considered. Each approach uses a different 
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combination of the calibrated Sigma0 horizontal-vertical (HV) and horizontal-horizontal (HH) 
polarization intensities, as well as IA and noise profile (NESZ) values: 

1. HV + HH 
2. HV + HH + IA 
3. HV + HH + IA + NESZ  
4. Filtered HV + HH + IA 

As listed above, the experiments cover three different approaches to accounting for the 
noise: no correction (feature sets 1 and 2 above), noise as a separate feature (feature set 3) 
and noise filtering, which is the subtraction of the noise profile given in the meta data (feature 
set 4). Since the noise is most problematic for the HV channel, we only corrected the HV 
channel intensities. 

The trends indicate that including information about the noise is valuable for the network 
both in terms of how quickly it converges and the achievable accuracies. Figure 3-2-2-2 shows 
the validation accuracies of the 13-layers CNN through the epochs for the different input 
combinations, and Table 3-2-2-1 shows the best accuracy achieved by the different 
compositions.  

Comparing the validation accuracy of HH+HV with HH+HV+IA, we can see that the blue line 
(HH+HV+IA) tends to have higher accuracy than the orange line (HH+HV) in Figure 3-2-2-2. 
This is expected, as the backscatter of the classes varies with incidence angle with a different 
decay ratio for each class. Including IA as a feature allows the network to learn these 
dependencies. However, the improvement is not very large, which is surprising, as we know 
there is a significant difference in the dependency on incidence angle of the ice and water 
classes. 

In contrast, when the network is trained using the noise corrected (filtered) HV intensities, it 
can better distinguish ocean from ice than with other combinations. The effect of correcting 
the noise is pronounced, leading to a much quicker convergence, in addition to converging to 
a higher accuracy. Subtracting the additive noise allows for easier visual interpretation, 
especially in the first swath, and it also allows the network to focus on learning the ocean and 
ice features, rather than trying to learn the noise. The extracted patches are then more 
distinguishable for the network, and the network can learn more quickly. However, when the 
noise profile is added as an input layer, the network can learn the relation between the signal 
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and noise, and implicitly cope with noisy patches in the classification task. Therefore, the 
validation accuracy is slightly better than when filtered patches are used. 

 

 
Figure 3-2-2-1: The overall architecture of the 13-layers CNN considering Noise-profile. We extract patches from the SAR 

images and feed them to the network during the training process.  



                                             H2020-825258 

 

 

Evaluation report on Polar use case output products - version I, D2.5 
23 

 

  

 
Figure 3-2-2-2: Validation accuracy for the 13-layers CNN, trained on four different combinations of input features. 

 

Table 3-2-2-1: Best Validation accuracy of 13-layers CNN considering different channels composition. 

 HH+HV HH+HV+IA HH+HV+IA+Noise FilteredHV+HH+IA 

Validation 
Accuracy 

99.63 99.76 99.95 99.86 

 

As shown in Table 3-2-2-1, the best classification accuracy was obtained by feeding in the 
NESZ profiles as a feature, allowing the network to figure out the appropriate scaling on its 
own. However, there is a significant downside to do it this way. As mentioned above, when 
introducing the NESZ, these profiles change with the processor version, meaning that we have 
to train separate models for different versions. This is not really feasible as it would require 
training data for all processor versions. Instead, it makes more sense to focus on feature set 
4 (Filtered HV + HH + IA), as it is easier to try to adjust the noise scaling to make a consistent 
time series, than it is to create new training datasets for each version.                

Inference results for the binary classification for the 13-layer network   

To show the generalization performance of the 13-layer CNN model for the binary ice versus 
water classification, we tested the models on images acquired from the Danmarkshavn area 
offshore of Greenland (the Met-dataset). Figure 3-2-2-3 shows the inference results of four 
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different images. Qualitatively, the ice vs. water classification looks reasonable for all images. 
What separates the cases is the classification performance in the noisy areas of the images 
and how well details within the ice pack are correctly classified. 

For the first input image, and considering the noise profile as an input channel, the network 
can cope with the noise and produce a classification result that is almost free of noise 
artefacts (row 1, column 4). When the filtered patches are used (row 1, column 5), we can 
still see some noise effects on the water, showing that the European Space Agency (ESA) noise 
profile is not sufficient to completely remove the noise (this has also been shown by Nansen 
Environmental and Remote Sensing Center (NERSC) in several papers on thermal noise 
correction, see Park et al., 2018). This result shows that the model can successfully make use 
of the provided information about the noise floor profile. Since we have provided the ESA 
noise profile as an extra input layer, the model has not learned the profile itself, but rather 
an appropriate approximation. We have not yet run this experiment with the NERSC 
correction model, but the expectation is that with an improved noise profile, these two 
approaches of handling the noise should perform similarly.  

The second row shows significant noise in large parts of the image, and clearly demonstrates 
the benefit of including information about the noise into the process. Whereas the HH, HV 
and HH, HV, IA classifications have noise artifacts along the sub-swath boundaries, the two 
experiments that actively consider the noise, provide much cleaner classification maps. 

Rows 3 and 4 show quite similar images but demonstrate some remaining challenges that we 
have to look further into. The third row shows poor performance overall. In this case, the 
noise information does not seem to help. We can also see some differences in the inference 
results with and without IA. However, in this case, the quality of the inference results is almost 
the same. In the fourth row, we get better results with the filtered HV feature (column 5) than 
with the NESZ as a separate input feature (column 4). There are a few likely explanations for 
the poor performance, all of which relate to the ESA Instrument Processing Facility (IPF) 
version. First, the SAR images are captured a few years ago, when the noise profile only 
contained the range direction (left-to-right). Hence, no information was available in the 
azimuth (down-up) direction for the network to learn. Secondly, the training dataset may be 
generated by different ESA processor versions, and the noise profile is known to vary between 
versions. Thirdly, the noise profile was incorrectly scaled, compared to recent versions, 
meaning that the filtered HV cases are expected to be poor. Going forward, we will account 
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for this, by training separately for different processor versions. Still, rows 3-4, columns 4-5 
(with noise handling) show improved details in the classification map compared to columns 
2-3. The vertical line in row 4, column 4 can be explained by the missing azimuth profile and 
is expected to improve when we include this information. 

 
Figure 3-2-2-3: Inference results based on 13-layers CNN using different combinations of features. Blue indicates water and 
white indicates ice. The input images show the original HV intensity images without noise correction, where the five sub-
swaths EW1-EW5 (left to right) are clearly visible.                                       

3.2.3 Multi-class inference results evaluation 
Ice type information is of high priority for ice charting and will be an important activity going 
forward. Following the binary sea ice-versus-water classification, we further extended our 
experimental analysis to the multi-class sea ice type classification case. We trained a model 
from scratch using 5 classes, including open water/leads with water, brash/pancake ice, 
young ice (YI), level first year ice (FYI), and old/deformed ice based on the UiT dataset.  We 
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considered the modified VGG-16 network and 13-layers CNN. The inference results are 
depicted in Figure 3-2-3-1 and Figure 3-2-3-2. 

 

 
Figure 3-2-3-1: Inference result for multi-class classification based on modified version of VGG-16 considering HV, HH, IA 

channels composition. Top row is original HV intensity images. Bottom row is classification maps. 

We would like to emphasize that the training dataset we use is scarce and unbalanced, with 
an unequal number of samples from the different ice types. This affects the classification 
performance, and the results presented in Figure 3-2-3-1 and Figure 3-2-3-2 are expected to 
be biased toward ice types where we have more samples than others. The effect of the 
imbalanced data can be seen for example in column 4, where brash/pancake ice is detected 
within the ice pack on the right-hand side. In general, brash/pancake ice is located at the 
edges towards open water, but is apparently here found in a dense ice area. However, brash 
ice can can be found inside the ice pack in leads between larger floes. The 13-layers CNN using 
filtered HV data produces quite clean results, especially in noisy areas. Despite this problem, 
the results indicate that the models are capable of distinguishing both different ice types as 
well as separating between ice and open water classes.   
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Figure 3-2-3-2:  Inference result for multi-class classification based on 13 layers CNN considering Filtered HV, HH, IA channels 
composition. 

3.3 Supervised pixel-wise sea-ice versus water classification       

3.3.1 Study area and training dataset generation 
The region between Greenland and Svalbard is selected as our area of interest and we have 
selected 9 scenes of the Extra Wide (EW) mode of Sentinel-1 over the time period January to 
March 2021 for training. To generate reliable data and label pairs, pixels at the boundaries 
between sub-swaths are removed and the noise floor correction methodology proposed by 
Nansen Environmental and Remote Sensing Center 
(https://github.com/nansencenter/sentinel1denoised) is implemented and applied. 
Subsequently, the images are reorganized into patches of size 224 x 224 to be fed into the 
model. The input layers are HH and HV intensities, as well as incidence angle (IA). 

For label generation, we utilized a clustering method to generate a baseline cluster map trying 
out various settings of the clusters to minimize the errors.  Based on this map, clusters are 
merged into ice or water. In this step, an expert is being consulted for assigning labels to the 
most ambiguous pixels.  In the end, 5,713 and 1,424 patches of labeled data are generated 
for training and validation, respectively. 
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3.3.2 Model architecture and experiment setting 
For the pixel-wise sea-ice classification, we have reviewed several classical semantic 
segmentation methods including FCN-8, FCN-16 (Long et al., 2015), deeplabv3 (Chen et al., 
2017), as well as the UNet (Ronneberger et al., 2015). After evaluating the performance of 
the architectures on referenced data, we decided to use the UNet for designing our model 
architecture. On this basis, the number of layers as well as the number of features of each 
layer, were further explored. Then, the final model architecture was chosen. It consists of 3 
layers of down-sampling and 3 layers of up-sampling.  We have denoted this model “the 
reduced UNet”, and its detailed architecture is depicted in Figure 3-3-2-1. 

 
Figure 3-3-2-1: Model architecture of reduced UNet 

During the training process, optimization method of Stochastic Gradient Descent (SGD) was 
utilized. Moreover, early stopping was considered at epoch n if the validation error of epoch 
n did not decrease with more than 0.001 for 7 consecutive epochs, i.e. from n+1 to n+7.  The 
batch size is32, learning rate is 0.001.  The training and validation procedure was carried out 
on a NVIDIA Quadro RTX 5000 Graphics Card.  

3.3.3 Results and evaluation  
We explored the model performance for the following feature combination:  i) HH, HV, and 
IA; ii) HH and IA; iii) HV and IA. The corresponding accuracies and losses for training and 
validation are shown in Figure 3-3-3-1 and in Table 3-3-3-1, respectively. It can be seen from 
the figure that after 20 epochs, the accuracy for the 3-layer input model converges to the 
value of 91.39%, with a training loss of 0.048, when using HH, HV and IA as the input features.  
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The training procedure takes roughly 20 minutes, and the model size storing the parameters 
is 4.13 MB.  

 

Figure 3-3-3-1: Training and validation accuracies (left) and loss (right) versus epochs. 

 

Table 3-3-3-1: Accuracy and loss for training and validation for different features selections 

 
Features 

accuracy (-) loss (-) 

training validation training validation 

 HH + IA 87.06% 87.52% 0.069 0.065 

 HV + IA 89.53% 89.17% 0.061 0.057 

 HH + HV + IA 91.39% 91.98% 0.048 0.044 

 

To further evaluate the model, we performed an inference study with the reduced UNet 
considering various scenarios of different percentage of ice and water in the scene, as well as 
the relative range location of ice and water. In addition, the chosen scenes illustrate how 
ambiguities in the SAR intensities of ice and water may arise as a consequence of varying wind 
conditions over the ocean. The inference processing of one scene takes about 20 seconds, 
depending on the size of the scene. Overall, we performed inference on 23 scenes, of which 
we include the results of 12 of them below.  The Figures 3-3-3-2 to 3-3-3-7 show from left to 
right: the images of HH and HV intensities, and the inference results for input compositions 
HH & IA, HV & IA, and HH & HV & IA, respectively. The identification numbers of the 12 scenes 
are indicated.
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               HH                                HV                             inference                        inference                    inference  

                                                                                                (HH+IA)                        (HV+IA)                       (HH+HV+IA) 

     
S1A_EW_GRDM_1SDH_20200112T070525_20200112T070625_030764_038727_C5F3 

     
S1A_EW_GRDM_1SDH_20200205T070524_20200205T070624_031114_03936B_4DC6 

Figure 3-3-3-2: Scenes dominated by water. 

 

 

      
S1A_EW_GRDM_1SDH_20210604T202343_20210604T202443_038195_0481F7_E982 

         
S1B_EW_GRDM_1SDH_20200128T121225_20200128T121329_020017_025DF2_AF51 

Figure 3-3-3-3: Scenes dominated by ice. 
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               HH                                HV                             inference                        inference                    inference  

                                                                                                (HH+IA)                       (HV+IA)                       (HH+HV+IA) 

      
S1B_EW_GRDM_1SDH_20201217T170625_20201217T170725_024745_02F173_36F7 

      
S1B_EW_GRDM_1SDH_20200209T170617_20200209T170717_020195_0263BC_B84 

Figure 3-3-3-4: Scenes with ice in the near-range and water in the far range. 

 

 

      
S1B_EW_GRDM_1SDH_20201109T073739_20201109T073839_024185_02DF97_51C2 

      
S1A_EW_GRDM_1SDH_20200315T073001_20200315T073101_031683_03A71B_38 

Figure 3-3-3-5: Scenes with water in the near range and ice in the far-range.
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               HH                                HV                             inference                        inference                    inference  

                                                                                                (HH+IA)                     (HV+IA)                       (HH+HV+IA) 

               
S1B_EW_GRDM_1SDH_20210501T042851_20210501T042914_026706_0330A5_734F 

      
S1B_EW_GRDM_1SDH_20210415T050122_20210415T050222_026473_03290E_110E 

Figure 3-3-3-6: Scenes dominated by water, with ice mostly in the far range. 

 

 

     
S1B_EW_GRDM_1SDH_20201119T173823_20201119T173923_024337_02E45F_A9CC 

           
S1B_EW_GRDM_1SDH_20210827T174654_20210827T174758_028435_03648F_057E 

Figure 3-3-3-7: Scenes dominated by water, with ice mostly in the near range.
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3.3.4 Conclusions 
Based on the analysis performed using the reduced UNet presented in Figure 3-3-2-1. for 
pixel-wise sea ice-versus-water classification, we have made the following conclusions: 

i) In general, the performance is good. The network is capable of distinguishing between sea 
ice and water. 

ii) The best performance is obtained when the input layers contain HH and HV intensities and 
the incidence angle. 

iii) The ice edge is quite well captured. 

iv) The inference results clearly show that noise is still a problem, even after state-of-the-art 
filtering. This is particularly a problem for sub-swath one, which is most heavily contaminated. 

v) It seems like the network may misclassify isolated water as ice or vice versa when the 
surroundings are dominated with pixels from the other class. 

All in all, we conclude that the capabilities of the reduced UNet is very promising. We think 
that the problems we have identified can be remedied with more accurate training dataset, 
covering larger variations in the imaging scenario. Our conclusions are currently quite 
qualitative. Future expansion into quantitative analysis of the performance will be pursued.  

3.4 Semi-supervised learning 

3.4.1 Model design and experiment setup 
To address the problem of a limited amount of labeled training data, we have investigated 
several methods of label propagation using semi-supervised learning approaches. These are 
methods that have proved themselves efficient in applications such as object detection (Tan 
et al., 2020), information protection (Yan et al., 2019), and natural language processing (Otter 
et al., 2020), and are designed to handle the situation where one wants to combine a small 
amount of labeled data with a large amount of unlabeled data. Our investigations have 
included experiments with the MixMatch method, with classification based on “Wide 
ResNet”, as well as an own-developed Teacher–Student architecture, where pseudo-labels for 
the unlabeled data are generated based on label propagation using the feature space 
structure.  

The MixMatch method is an interesting method since it shows very high accuracy in standard 
computer vision datasets. However, for our application, this model suffers from convergence 
problems and fluctuates through the training process. MixMatch has several important 
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hyperparameters which should be tuned to optimize the training process; the estimation of 
hyperparameters is complicated, and training is very time consuming. Therefore, we need 
more investigation on this method to tune and customize it for our specific applications.  

Our main focus, however, has been on a new Teacher–Student based label propagation 
model using semi-supervised deep learning, referred to as SSL-LP. The 13-layer network 
presented in the supervised case is used both for the Teacher and the Student models. In our 
approach, the Teacher model is trained in a two-step procedure. In the first step, the model 
is trained in a supervised manner using the labeled data. Subsequently, both the labeled and 
unlabeled samples are fed to the trained Teacher model and based on an evaluation of the 
feature space embedding, pseudo-labels for the unlabeled data are generated through a label 
propagation procedure (Khaleghian et al., 2021b). The training methodology is depicted in 
the Figure 3-4-1-1.  

 

Figure 3-4-1-1: TSLP-SSL training methodology.  

 

We have two models namely Teacher and Student. The Teacher model is trained on labeled 
data during the first stage and then both models are trained on labeled and unlabeled data 
during the second stage of the training. 

With the aforementioned methodology, we have carried out the following experiments.  
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Experiment 1: We evaluated the validation accuracy of the proposed method considering 
different numbers of labeled data from the UiT dataset. In this case, the rest of the UiT dataset 
makes up the unlabeled data. Table 3-4-1-1 shows the obtained validation accuracy based on 
the different numbers of labeled data. Note that for validation, we extracted ice and water 
patches from polygons drawn in the MET dataset generated by Norwegian Meteorological 
Institute over the Danmarkshavn region. The classification results are compared with the fully 
supervised network presented above, using the same number of labeled data. As can be seen, 
the proposed method can improve the accuracy by being able to extract relevant information 
from unlabeled data. Table 3-4-1-2 shows other metrics including precision, recall and F1 
score. These metrics also show the same behavior.  

 

Table 3-4-1-1: Validation accuracy of proposed method considering different numbers of labeled samples 

 

 

Table 3-4-1-2: Average of precision, recall and fi-score for different numbers of labelled data and unlabelled data from 
training dataset. 
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Figure 3-4-1-2: Inference results. We present qualitative results of a single input image. The first row depicts the results 
considering supervised deep learning and the second row depicts the results using our proposed TSLP-SSL model. 

Experiment 2: We also did an experiment where the unlabeled data consisted of 5000 patches 
extracted randomly from the MET dataset. In this case, we did not actually know the labels of 
extracted patches. We trained our model using all the samples in the UiT set as labeled data. 
Figure 3-4-1-2 shows some inference results comparing the classification result using this 
trained model with the result using the 13-layers CNN with supervised learning (Khaleghian 
et al., 2021b). As can be seen, the initial results of the semi-supervised learning approach 
were quite promising, and we will conduct further research to investigate the full potential of 
this methodology.  

 

Table 3-4-1-3: Validation accuracy, average precision, average recall and average f1-score considering additional real 
unlabeled data. 

 
3.4.2 Inference results evaluation 
We also present some inference results using four different images from the Danmarkshavn 
data provided by MET Norway, considering the student model trained on labeled datasets 
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and extended with unlabeled data (Experiment 2). In Figure 3-4-2-1, the left column depicts 
the original SAR images, the middle column presents the inference results obtained with the 
supervised learning model, and the last column shows the results obtained with our proposed 
TSLP-SSL method. Water is highlighted in blue color and ice is highlighted in white color. These 
inference results again show the capability of our proposed semi-supervised method in using 
the information of unlabeled data. 

 
Figure 3-4-2-1: (Left) HV intensity image. (Middle) inference result of supervised model. (Right) inference result of semi-

supervised model. 
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We also evaluated the proposed method on a number of different images from the MET 
Norway dataset. Figure 3-4-2-2 shows the inference results of these images. The annotated 
red rectangles indicate areas of misclassification. We mainly have two issues. We have some 
noise effects on the boundary between the first and the second sub-swaths. However, we 
believe the noise removal method developed by NERSC (see above) can lead to better 
classification results. We also see some misclassification of young ice and ice covered by water 
areas.  

 

 
Figure 3-4-2-2: Inference results using more images from MET Norway dataset. We annotated the challenging areas in 

these images. 
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4 Implementation on Hopsworks and the PolarTEP 

Hopsworks is utilized for distributed training to test our model in an operational phase. Figure 
4-1. part a (lower part) shows the overall architecture, in which Hopsworks is used for the 
data processing and distributed training. We used the Hopsworks capabilities to read the 
training data and train it on several spark executors which hold TensorFlow codes. The 
training dataset associated with the water – ice classification task was converted to the 
TFrecord file format and stored on HopsFS and then used by TensorFlow for distributed 
training. For distributed training, we considered different training strategies, including 
MirroredStrategy and MultiWorkerMirroredStrategy. We have reported our experiments in 
Deliverable 2.3.  

PolarTEP pre-processes the data, dividing a full satellite scene into smaller blocks. Then 
PolarTEP classifies each block using the Hopsworks model serving through the exposed REST 
APs. Next, PolarTEP reassembles the result into a full classification map. This was the most 
natural way to set up the inference step, given the capabilities of Hopsworks. In fact, 
Hopsworks provides a nice way to work with model training and serving in Python or PySpark. 
For the inference phase, we considered two different implementations, which are indicated 
in part a and b of Figure 4-1.  In the first implementation, a, inference is performed on 
Hopsworks. In this case, patches are generated and sent to Hopsworks to be classified. For 
implementation b, inference is performed on PolarTEP. In this case, the trained models are 
transferred to PolarTEP and PolarTEP is responsible for the pre-processing and inference.  
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Figure 4-1: Overall architecture of UiT implementations using Hopsworks and PolarTEP. 

 

In response to the need for custom data processing, in the second implementation, the 
trained model is transferred to PolarTEP in an off-line way. In PolarTEP, by using a workflow 
like the scheme based on Docker container technology, we can accomplish pre-processing 
and inference at the same place and close to the Copernicus data using PolarTEP on the 
CreoDIAS platform. In this implementation, the trained modes are transferred in offline mode 
by creating a Docker image. More details are found in deliverable D5.5. 

5 Additional studies  
5.1 Distributed training 
Deep Neural Network (DNN) is rapidly taking over a variety of aspects in our daily lives. 
However, DNNs’ rise into prominence is tightly coupled to the available computational power. 
A single machine is often not capable of finishing a training task in a desired time frame.  It is 
more significantly important when we have a large amount of training data. Especially in semi-
supervised learning where we can increase unlabeled data used in the training process easily. 
Therefore, to have scalable computing to analyze large amounts of data is essential. In Table 
5-1-1, we report our training time considering different semi-supervised methods. Although 
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our training dataset is not so big, we can observe high training time based on these methods. 
It clearly shows the need for scalable deep learning algorithms for processing large datasets.   

 

Table 5-1-1: Training time for different methods using 60 labeled data and 10000 unlabeled data on the UiT training 
dataset on a single GPU (Quadro RTX 5000 16GB). 

 
We investigated a distributed training based on knowledge distillation called co-distillation 
(Anil, 2018). This method is interesting because, 1) it is related to our proposed method in 
supervised and semi-supervised and we can apply this method to extend our proposed 
method especially TSLP-SSL to distributed training, 2) this method provides more parallelism 
while reducing the communication cost, and 3) it can be used on commodity hardware in 
contrast to other approaches that need high speed and low latency networks.  

Anil et al. (2018) proposed an online variant of distillation that is called co-distillation. In 
contrast to the two-step distillation, when two or more models co-distill, there is only one 
phase. Co-distillation trains n copies of a model in parallel and starts distillation early in the 
training process using an additional distillation term to the loss function. Co-distillation is an 
elegant alternative approach to distributed training with reduced communication overhead. 
Rather than synchronizing models to have the same weights, co-distillation seeks to share 
information by having the models represent the same function (i.e., input-output mapping).  

Based on co-distillation, we proposed a method called feature-based co-distillation. We take 
advantage of including learned feature space by CNNs to perform more effective distillation. 
The overall architecture of this method is shown in Figure 5-1-1.  
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Figure 5-1-1: Overall architecture of feature-based co-distillation (FBC). 

 

Our method can achieve the same accuracy of co-distillation with fewer epochs. Figure 5-1-2 
shows the validation accuracies of our proposed method, co-distillation, and AllReduce 
algorithms on two machines with 3 GPUs on each. In this experiment, we use early stopping 
when co-distillation and our method reach the highest accuracy of AllReduce. In this 
experiment, we considered a high update interval (9000 steps) and we can see a jump in 
training loss when we start distillation in the training process. 

 

 
Figure 5-1-2: Validation accuracy and training loss of AllReduce, Co-distillation, and our proposed method. 

 

We are working to publish our method for scalable deep supervised learning. However, we 
will continue to research on extending our distributed training method for semi-supervised 
learning (especially our proposed method TSLP-SSL) in the future.  

5.2 Incidence angle dependency  
Another side study at UiT addresses statistical sea ice classification with ice-type dependent 
incidence angle dependency integrated into the classification algorithm. As can be seen from 
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Figure 2-2-1, open water has a steeper intensity decay with incidence angle than multi-year 
and first-year ice. Detailed studies indicate that the incidence angle decay also varies with ice-
type. The common pre-processing method, and currently the best solution, is known as 
incidence angle correction and applies a range-dependent image scaling to the whole image. 
However, this must be performed with a single common rate, since the classes are not yet 
known, and is therefore not optimized for all classes. A single slope correction may suffice 
when limited to classes with similar slopes, such as first-year and multi-year ice only in the 
Canadian Archipelago (Mahmud et al., 2018), but not for more general cases that can include 
small water areas such as leads. As intensities of various objects can be affected differently 
with incidence angle owing to the geometrical interaction between microwaves and image 
targets, Cristea and co-authors proposed an unsupervised method to distinguish water, oil 
slicks and ice (Cristea et al., 2020).  For this method, a multivariate Gaussian Mixture model 
is employed to fit the HH and HV intensities, where the mean value of each component decays 
linearly with incidence angle.  In the end, the appropriate number of clusters, which 
correspond to the Gaussian functions, are being estimated through goodness-of-fit tests.  This 
physical based clustering algorithm may give a better confidence for labeling and eventually 
can aid the pixel-wise classification.  To further investigate the benefit, we performed training 
and validation on the same images we selected in Section 3.3, with the same setting. It turns 
out that the early stopping happens before epoch 20, which indicates that the model 
converges more quickly than the model using the basic clustering method, without physical 
information provided. Furthermore, the accuracy for training and validation are 94.4% and 
94.5%, respectively, which is slightly better than the achieved performance by using our 
training labels used in Section 3.3. Meanwhile, the loss for using these labels is 0.032 and 
0.031 for training and validation, which is also better, compared with our findings in Table 3-
3-3-1. The detailed training and validation accuracy as well as loss as function of epochs are 
shown in Figure 5-2-1. 

Furthermore, we also carried out the inference procedure using the model trained by using 
this segmentation method, which is shown in Figure 5-2-2. In the figure, the first and second 
columns indicate the intensity over HH and HV polarization, while the third and fourth 
columns represent the inference obtained by the model trained using the clustering method 
without (Section 3.3) and with (this section) physical information about incidence angle 
considered.  
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Figure 5-2-1: Training and validation accuracies (left) and loss (right) versus epochs. 

                HH                                                   HV                                          inference                                   inference                    

                                                                                                           (without physical information)          (with  physical information)                   

                  
S1A_EW_GRDM_1SDH_20210604T202343_20210604T202443_038195_0481F7_E982 

                        
S1B_EW_GRDM_1SDH_20200209T170617_20200209T170717_020195_0263BC_B84 

                        
S1A_EW_GRDM_1SDH_20200315T073001_20200315T073101_031683_03A71B_3 
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Figure 5-2-2:  Inference by using physical based labeling for training compared, with the labelling without physical 
constraints 

As can be seen, by considering the physical information about the incidence angle effect, the 
inference over ice is much better than the inference captured by the original method.  
However, more misclassifications are also found for using physical information, especially 
when the wind is over the open water. This indicates that the inclusion of windy scenarios 
over sea-ice is demanding for obtaining good inference. 

5.3 Polarimetry analysis 
The ambiguity of SAR scattering from sea ice is a significant obstacle to automatic sea ice 
classification. In order to mediate this problem, several approaches to extract more surface 
information from the SAR signals have been addressed. One way to reduce ambiguities is by 
adding more polarimetric features to the input dataset.  A full-polarimetric SAR system 
transmits and receives both linear horizontal (H) and vertical (V) polarized electromagnetic 
waves and is hence providing measurements in four polarization channels (quad-pol). These 
are generally referred to as the HH, VV, HV and VH channels. It is well known that a full 
polarimetric SAR system enables the extraction of scattering information through so-called 
polarimetric target decompositions. However, there are methods to derive similar scattering 
information from dual-polarimetric data. At UiT, this direction has been pursued with the goal 
of understanding the additional value of these extra features with regard to the interpretation 
of sea ice SAR scenes. More specifically, we have studied the capabilities of some recently 
introduced features defined through their geodesic distance (GD) measures from canonical 
targets (Debanshu et al., 2020) in providing sea ice information. As an example, Figure 5-3-1 
illustrates the ice-versus-water distinguishing power of two GD parameters derived from a 
Radarsat-2 scene, where the image to the left is a Pauli image generated from the full-
polarimetric scene, the next two are two GD-parameters generated from a quad-pol scene, 
and the two panels to the right are the same features generated from only the HH & HV 
channels. As can be seen, the dual-pol based parameters preserve the difference between ice 
and water. A drawback of the method is that it relies on single-look complex data, which is 
why the features have not yet been tested in a DL classification architecture. 
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Figure 5-3-1: Comparison of GD parameters generated from quad- and dual-pol RS-2 data. Left panel: Pauli image showing 
water as dark blue and sea ice as green/white. The next two panels: Quad-pol generated GD parameters. Two right-most 

panels: same GD parameters generated from dual-pol data. 

6 Summary and conclusion 
The user requirements for the Polar Use Case concluded that: “the types of satellite data 
needed varied with the type of user being supported: transportation and other tactical 
information needed high resolution synthetic aperture radar (SAR) data, whilst climatological 
studies found low resolution passive microwave (PMW) data sufficient.” The former users, 
i.e., the ship captains operating in ice-infested waters, need high-resolution information, on 
the orders of meters, whereas climatologists can do well with low resolution data. When 
studying and developing deep learning architectures, we have had both these requirements 
in mind. We have studied both low-resolution architectures, which are based on patch-wise 
SAR-inputs and as well as patch-wise outputs, and high-resolution models, which produce 
pixel-wise output classification maps. 

In this document, we briefly discuss some of the intrinsic challenges of sea ice classification 
based on Sentinel-1 EW mode SAR images. We focus on binary sea ice-versus-water 
classification but include a section on multi-type classification. It is argued that ice versus 
water separation is the natural first step, and the task of performing ice-type maps will come 
next. 

The patch-wise architectures were at the outset relying on common structures, which had 
shown good performance in the computer vision application area. Hence, the VGG-16 
network was selected as the base model. We investigated various ways of training the model, 
including transfer learning approaches, and found that due to the specific properties of SAR 
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data, the primary data source for the polar use case, the network should be trained from 
scratch using reliable training data in order to perform optimally. 

In the ExtremeEarth project, we learnt that for sea ice mapping, reliable training data in fact 
is a critical factor in order for DL models to perform well. For the sea ice classification case, 
the generation of enough reliable training data is probably more critical, than which 
architecture is used. In order to alleviate the scarcity of training data, we extended the study 
of patch-wise classification to also include semi-supervised learning and introduced a new 
model.  We demonstrated that our semi-supervised model was in fact able to extract useful 
label information from un-labelled samples and overall, was able to perform well for the ice-
versus-water classification task. 

In the pixel-wise case, after testing out several alternatives, we ended up using the UNet 
architecture. In this case, we also generated a new training dataset using an ad-hoc active 
learning strategy based on standard K-means clustering.  The current deliverable documents 
that ice-water separation may sometimes be easy, but, because of often varying wind 
conditions over the oceans, very challenging cases may also occur. Our trained reduced UNet 
shows promising potential, with some cases of excellent performance. 

In conclusion, the lessons learnt from the ExtremeEarth project can be summarized as 
follows: 

● DL algorithms show promising performance, but they need extensive amounts of 
reliable training data to perform well. 

● The generation of training data is a time-consuming and labor-costly process, which 
needs to involve analyst experts with profound experience in interpreting SAR images.  

● Semi-supervised approaches may alleviate the lack of large labeled data sets for 
training, by taking advantage of huge amounts of un-labeled data. 

● For pixel-wise classification, the reduced UNet seems to be a suitable architecture. 
However, the appropriate size of the network and the depth in terms of feature layers 
at each stage, need to be further explored. 

Our experience from the ExtremeEarth project is supporting the experience that many other 
researchers have made when it comes to automatic sea ice classification from SAR. The 
problem is not trivial due to the complexity of the SAR imaging, the complexity of scattering 
from the sea ice medium, and due to the changes of the SAR signal properties as a function 
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of seasonal changes. The DL algorithms definitely have proved themselves to be valuable 
tools that will be helpful in the future, but the algorithm development needs to be supported 
by understanding of the physics of the problem. 
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