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Executive Summary

The deliverable D3.2 is part of WP3, whose objective is to develop a set of tools for querying,
integrating and running extreme analytics over the big information and knowledge that will be
mined from Copernicus data and other auxiliary data sources using the techniques of WP2. This
information and knowledge will be encoded as linked geospatial data and will be integrated with
other open linked data sources to be demonstrated in the two use cases of ExtremeEarth.

In this deliverable, we present the algorithms for Geospatial Interlinking that were developed in
the context of Task 3.2 during the second half of the project. They apply to spatial entities,
i.e., geometries on Earth’s surface, of two types: LineStrings and Polygons. We have developed
techniques both for both batch and progressive processing. We also present the second version of
JedAI-spatial, which offers an open-source library of our algorithms as well as the main techniques
in the literature. JedAI-spatial conveys both serial methods, which run on a single CPU, and
massively parallel ones, which run on top of Apache Spark. No other relevant tool has so many
capabilities at the moment. We conclude with a discussion about further extensions that are
currently under review.
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1. Introduction

Geospatial data has escalated tremendously over the years. The outbreak of Internet of Things
(IoT) devices, smartphones, position tracking applications and location-based services has sky-
rocketed the volume of geospatial data. For example, 100TB of weather-related data is produced
everyday1; Uber hit the milestone of 5 billion rides among 76 countries already on May 20, 20172.
Web platforms like OpenStreetMap3 provide an open and editable map of the whole world. Earth
observation programmes like Copernicus4 publish tens of terabytes of geospatial data per day on
the Web5. For these reasons, geospatial data constitutes a considerable part of Semantic Web
data, but the links between its data sources and their geometries are scarce in the Linked Open
Data cloud [Ngo13, PMMK21].

Geospatial Interlinking aims to cover this gap by associating pairs of geometries with topological
relations like those of the Dimensionally Extended 9-Intersection Model (DE-9IM) [EF91, CFvO93,
CSE94]. In Figure 1.1 for instance, LineString g3 intersects LineString g4 and touches Polygon g1,
which contains Polygon g2. Two are the main challenges of this task: (i) its inherently quadratic
time complexity, because it has to examine every pair of geometries, and (ii) the high time com-
plexity of examining a single pair of geometries, which amounts to O(N logN), where N is the
size of the union set of their boundary points [CN97]. As a result, Geospatial Interlinking involves
a high computational cost that does not scale to large Web datasets.

g1 g2
g3

g4

A

B

1 2 3 4 5 6

Figure 1.1: Example of four topologically related geometries.

Numerous algorithms aim to address these challenges by enhancing the time efficiency and scalabil-
ity of Geospatial Interlinking. The most recent ones operate in main memory, reducing the search
space to pairs of geometries that are likely to be topologically related according to a geospatial index
[SSC+13, SJ14, PKNK18]. However, no open-source system organizes these algorithms into a com-
mon framework so as to facilitate researchers and practitioners in their effort to populate the LOD
cloud with more topological relations. Systems like Silk [JIB10] and LIMES [NA11] convey only
the methods developed by their creators, Silk-spatial [SK16] and RADON [SDSN17] respectively,
while systems that could act as a library of established methods, such as stLD [SGD+19, SDVV20],
are not publicly available. Moreover, no system supports progressive methods, neither for serial
nor for parallel processing, even though they are indispensable for applications with limited or
temporal resources [PMMK21].

To address these issues in the context of Task 3.2, UoA extended its open-source JedAI framework
for Data Integration with new algorithms for interlinking big geospatial data sources. We actually
develop a new module, called JedAI-spatial, which serves both as an open-source library of
the state-of-the-art works in the field and as an open-source system that implements new methods
that go beyond existing works in terms of efficiency and scalability. JedAI-spatial has the following
unique characteristics:

1https://www.ibm.com/topics/geospatial-data
2https://www.uber.com/en-SG/blog/uber-hits-5-billion-rides-milestone
3https://www.openstreetmap.org
4https://www.copernicus.eu
5https://www.copernicus.eu/sites/default/files/Copernicus_DIAS_Factsheet_June2018.pdf
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• It organizes the main algorithms for Geospatial Interlinking into a novel taxonomy that
facilitates their use and adoption by practitioners and researchers based on three dimensions:

1. Space Tiling, which determines the approach for reducing the search space,

2. Budget-awareness, which distinguishes interlinking algorithms into batch and progres-
sive ones, and

3. Execution mode, which discerns between serial algorithms, running on a single CPU-
core, and parallel ones, running on top of Apache Spark6.

• Its intuitive user interface supports both novice and expert users: they simply have to select
one of the available methods per workflow step and optionally configure it. It also simplifies
the benchmarking of the main algorithms in the field through the workbench window that
summarizes the performance of the algorithms executed so far. This is a crucial task for
identifying the best approach for a particular task at hand, given that the experimental
analyses in the literature are usually limited with respect to the variety in datasets or the
baseline methods.

• Its modular and extensible architecture allows for easily incorporating improvements to all
algorithms.

• It optimizes the implementation of existing algorithms, some of which have not been applied
to Geospatial Interlinking before.

• It conveys new techniques that achieve competitive performance.

• We have publicly released the code of JedAI-spatial under the Apache License V2.0 at:
https://github.com/GeoLinker/GeoLinker. In this way, we fulfill the two main challenges
that arise in data integration [GHMT17]:

1. the development of extensible, open-source tools, and

2. the provision of solutions that apply not only to structured, but also to semi- or even
un-structured data, due to its broad coverage of data formats.

The rest of the deliverable is structured as follows: Chapter 2 discusses prior work in the field,
Chapter 3 provides background knowledge on Geospatial Interlinking, and Chapter 4 describes the
architecture of JedAI-spatial, explaining the role of every component. Chapter 5 delves into its
back-end, outlining the functionality of every supported method and highlighting our improvements
that lead to significantly higher time efficiency. We briefly describe its front-end in Chapter 6 and
perform an experimental analysis over large, real datasets in Chapter 7, providing useful insights
into the pros and cons of the main algorithms.

6https://spark.apache.org
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2. Prior work

In the Semantic Web domain, there are three related systems:

1. Silk [JIB10] constitutes an open-source, generic framework for Link Discovery that comprises
a specialized component for Geospatial Interlinking, called Silk-spatial [SK16]. It exclusively
supports a budget-agnostic, parallel method that runs on top of Apache Hadoop1. Its Fil-
tering relies on a static, coarse-grained Equigrid, whose dimensions are defined by the user.
Its Verification computes a single topological relation in each run.

2. LIMES [NA11] is an open-source, generic framework for Link Discovery with two algorithms
for Geospatial Interlinking: ORCHID [Ngo13], which detects proximity relations in an effi-
cient way, and RADON [SDSN17], which detects topological relations. RADON’s Filtering
employs a dynamic Equigrid, whose granularity depends on the input data, while its Ver-
ification relies on a hash map that stores all examined pairs in order to avoid repeated
computations. Due to this data structure, RADON has been parallelized as a multi-core,
shared-memory process, rather than a shared-nothing, MapReduce-based approach. Origi-
nally, its Verification computed a single topological relation per run, but was later extended
to compute all relations at once, through the Intersection Matrix [ASN18].

3. stLD [SGD+19, SDVV20] is a tool that is crafted for Geospatial Interlinking. It is limited
to budget-agnostic approaches, conveying a variety of algorithms, such as R-Tree, static
Equigrid as well as hierarchical grid. Similar to JedAI-spatial and GIA.nt [PMMK21], its
algorithms are capable of loading only the source dataset in main memory, reading the
target one on-the-fly. stLD also supports massive parallelization on top of Apache Flink2.
Its Verification supports both proximity and topological relations, but computes a single
relation per run. Most importantly, though, its code has not been publicly released.

Note that none of these systems supports budget-aware algorithms. Such algorithms are only exam-
ined in [PMMK21], which proposed Progressive RADON and GIA.nt. Both have been integrated
into JedAI-spatial, just like the proposed budget-agnostic algorithm, GIA.nt.

Note also that these systems are of limited scope, as the open-source systems (Silk and LIMES)
convey only the algorithms developed by their creators, while stLD, being a proprietary software,
cannot be used as a library of the state-of-the-art tools in Web applications nor can it be extended
with novel techniques and pipelines.

To the best of our knowledge, no other systems similar to JedAI-spatial have been publicly released.
The most relevant tools, which support parallelization on top of Apache Hadoop or Spark, are
analyzed in [PKNK18]. They all support a variety of spatial queries, such as distance (range) and
kNN queries, but in the context of Geospatial Interlinking, only their spatial join is applicable.
Each tool essentially offers a single parallel algorithm for this join. The most recent and advanced
systems are GeoSpark [YWS15] (a.k.a., Apache Sedona3), Spatial Spark [YZG15], Location Spark
[TYM+16, TYM+20] and Magellan4. Their algorithms have been integrated into JedAI-spatial.

Finally, related to JedAI-spatial are two works that examine the relative performance of 10 serial,
budget-agnostic algorithms that run in main memory [SSC+13, SJ14]. However, their experimental
analyses focus on answering distance (range) queries about moving objects.

1http://hadoop.apache.org
2http://flink.apache.org
3https://sedona.apache.org
4https://github.com/harsha2010/magellan
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3. Preliminaries

JedAI-spatial supports the two types of geometries in Figure 1.1:

1. the one-dimensional LineStrings or Polylines, which comprise a sequence of points and the
line segments that connect the consecutive ones. E.g., a river or a road is represented by the
set of points in its route, connected with straight line segments.

2. the two-dimensional Polygons, which usually comprise a sequence of connected points, where
the first and last one coincide. E.g., the borders of a country are described by a polygon,
usually a complex one.

Both types of geometries consist of an interior, a boundary and an exterior (i.e., all points that are
not part of the interior or the boundary). These three parts are used by the Dimensionally Ex-
tended nine-Intersection Model (DE-9IM)1, which has been standardized by the Open Geospatial
Consortium (OGC), to define 10 topological relations between two geometries A and B:

1. equals(A,B): the interiors and boundaries of A and B are identical.

2. disjoint(A,B): A and B have no point in common, as the interior and boundary of A
intersect neither with the interior nor with the boundary of B.

3. intersects(A,B): A and B have at least one point in common, i.e., their interiors or
boundaries are not disjoint.

4. touches(A,B): the boundaries of A and B intersect but their interiors do not.

5. within(A,B): A is located inside the interior of B.

6. contains(A,B): within(B,A).

7. covers(A,B): all points of B lie in A’s interior or boundary.

8. covered-by(A,B): covers(B,A).

9. crosses(A,B): A and B have some interior points in common but not all, while dim(A) <
dim(B) or dim(B) < dim(A).

10. overlaps(A,B): A and B have some points in common but not all, while dim(A) = dim(B).

Examples of these relations are shown in Figures 3.1(a) and (b). Note that dim(g) amounts to 0, 1
or 2 if geometry g is a point, a line segment or an area, respectively. Note also that JedAI-spatial
disregards redundant relations. For example, if Contains(s, t) = true, it does not materialize the
equivalent Within(t, s) = true. Most importantly, JedAI-spatial, disregards the relation disjoint
for two reasons [PMMK21]:

1. It provides no positive information for the relative location of two geometries.

2. It is impractical to compute it in the case of large input data, because it scales quadratically
with the input size, given that the vast majority of pairs are disjoint.

D3.6 Software for interlinking geospatial RDF data sources-v2 4
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(a) (b)

Figure 3.1: Examples of the DE-9IM topological relations between (a) pairs of LineStrings, and
(b) LineStrings and Polygons [SDSN17].

Yet, JedAI-spatial is based on a closed-world assumption: the lack of the relation intersects
between two geometries implies that they satisfy the relation disjoint.

Following [PMMK21, ASN18], JedAI-spatial considers Holistic Geospatial Interlinking, which si-
multaneously computes all positive topological relations (i.e., all DE9IM relations except disjoint).
In practice, for each pair of geometries it computes the Intersection Matrix, from which all relations
can be extracted with simple boolean expressions. We didn’t follow the approach of Silk, LIMES
and stLD, where every run computes an individual topological relation, because they repeat the
entire processing to the same data multiple times in order to produce all topological links.

Overall, Geospatial Interlinking is formally defined as:

Problem 1 (Geospatial Interlinking). Given a source and a target dataset, S and T , together with
the set of positive topological relations R, compute the set of links LR = {(s, r, t) ⊆ S × T × R :
r(s, t)} from the Intersection Matrix of all related geometry pairs.

Given that all batch Geospatial Interlinking algorithms produce an exact solution, yielding the
same links, their performance is exclusively assessed with respect to time efficiency: the lower their
running time is, the better.

Challenges & Solutions. The main challenge for Geospatial Interlinking is its quadratic time
complexity, O(n2). It essentially requires that every possible pair of geometries should be analyt-
ically processed to examine whether a topological relation is satisfied. As a result, this task does
not scale to the large volumes of data that lie at the focus of ExtremeEarth.

This is especially true, when considering the high complexity of examining a topological relation
for a single pair of entity descriptions. The geometries are typically complex, thus turning the
comparison of their interior, boundary and exterior into a rather time-consuming process.

To address the high time complexity of both tasks, we consider three approaches for increasing the
time efficiency and scalability of Geospatial Interlinking:

• Filtering is the task of grouping together geometries that are highly likely to satisfy a particu-
lar relation. These are geometries with intersecting Minimum Bounding Rectangles (MBRs).
To efficiently identify them, Filtering performs Space Tiling, dividing the Earth’s surface into
a set of rectangles, i.e., tiles, of the same dimensions. As an example, consider the gray dashed

1https://en.wikipedia.org/wiki/DE-9IM
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rectangles in Figure 1.1. Every geometry is then placed into the tiles that intersect its MBR,
i.e., the dotted gray rectangle in Figure 1.1. By considering only the pairs of geometries that
co-occur inside every tile, we significantly restrict the search space, avoiding the brute-force
approach of examining all possible pairs. We do not introduce any novel filtering methods,
but we combine the state-of-the-art existing methods with the following two features for the
first time in the literature.

• Massive parallelization on top of Apache Spark2. Our goal is to exploit the high computa-
tional power of the Hops platform by distributing all computations to the available nodes.
This pertains not only to Filtering, but to the entire end-to-end workflow of Geospatial In-
terlinking. Several frameworks in the literature focus on massive parallelization over Apache
Spark, such as Apache Sedona3 (a.k.a., GeoSpark) and Magellan4. We have integrated all of
them into JedAI-spatial through a common three-step procedure. We perform an analytical
scalability analysis, demonstrating that our parallelization approach outperforms the main
relevant techniques in the literature to a significant extent.

• Progressive functionality aims to schedule the processing of the input data such that the
results are produced in a pay-as-you-go fashion. Even though the final outcome is identical
with a batch process, the progressive process produces significantly more verified relations
at any early point in time. Thus, progressive methods are ideal when the computational
resources are available for a limited period of time, as is the case with the Hops platform.
They are also ideal for tasks that can operate with partial results. Note that no other tool in
the literature offers progressive techniques for Geospatial Interlinking. See below for a formal
definition of this task.

3.1 Progressive Geospatial Interlinking

An approximate solution to Geospatial Interlinking is provided by progressive algorithms, which
run for a limited time or number of calculations. Compared to batch algorithms, their goal is
twofold [PMMK21]:

1. they should produce the same results if they process the entire input data, and

2. they should detect a significantly larger number of related geometry pairs, if their operation
is terminated earlier.

These requirements are reflected in Figure 3.2, where the horizontal axis corresponds to the number
of examined pairs and the vertical one to the number of related pairs. Essentially, the progressive
algorithms should define a processing order that examines the related pairs before the non-related
ones, unlike batch algorithms, which examine pairs in an arbitrary order. Hence, the progressive
algorithms should maximize the area under their curve, an evaluation measure called Progressive
Geometry Recall that is defined in [0, 1], with higher values indicating higher effectiveness.

Given a budget BU on the maximum calculations or running time, progressive algorithms tackle
the following task [PMMK21]:

Problem 2 (Progressive Geospatial Interlinking). Given a source and a target dataset, S and
T , the positive topological relations R and a budget BU , maximize Progressive Geometry Recall
within BU .

In addition to Progressive Geometry Recall, progressive algorithms are evaluated with respect to
the following three measures, too:

2https://spark.apache.org
3https://sedona.apache.org
4https://github.com/harsha2010/magellan
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Figure 3.2: The Progressive Geometry Recall of budget-agnostic (batch) and budget-aware (pro-
gressive) algorithms.

1. run-time,

2. precision, i.e., the number of detected related pairs divided by the number of examined pairs,
and

3. recall, i.e., the number of detected related pairs divided by the maximum number of related
pairs that would be found within BU examinations in the optimal case – after placing all
related pairs before the non-related ones.
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4. System Architecture
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Figure 4.1: The solution space of Geospatial Interlinking algorithms that can be constructed by
JedAI-spatial.

JedAI-spatial organizes the Geospatial Interlinking algorithms into a novel taxonomy formed by
three dimensions, as shown in Figure 4.1:

1. Space Tiling distinguishes the Geospatial Interlinking algorithms into grid-, tree- and partition-
based ones. The first category includes Semantic Web techniques that define a static or
dynamic Equigrid, the second one encompasses main-memory spatial join techniques from
the database community, and the third one conveys variations of plane sweep, a cornerstone
algorithm of computational geometry.

2. Budget-awareness categorizes algorithms into budget-agnostic and budget-aware ones. The
former are executed in a batch manner that processes the input data in no particular order,
producing results only upon completion of the entire process. Budget-aware algorithms are
suitable for applications with limited computational or temporal resources, producing results
progressively, in a pay-as-you-go manner.

3. Execution mode distinguishes between serialized algorithms, which run on a single CPU core,
and massively parallel ones, which run on top of Apache Spark.

JedAI-spatial creates any end-to-end pipeline that is defined by these three dimensions. This is
achieved by the model-view-controller architecture in Figure 4.2: JS-gui offers two interfaces for
user interaction (view), JS-core conveys numerous algorithms and pipelines (controller), and the
Data Model component provides the data structures that lie at its core (model).

This architecture serves the following goals:

• Broad data coverage. Through its Data Reading component, JedAI-spatial supports the most
popular structured and semi-structured formats that are used for encoding geometries: Well
Known Text (WKT) files, CSV and TSV files, GeoJSON files, RDF dumps, JsonRDF as
well as SPARQL endpoints. In this way, JedAI-spatial is able to interlink heterogeneous
datasets, e.g., WKT data with GeoJSON files. Special care has been taken to detect and
ignore corrupted data as well as to remove noise, which is quite common in automatically or
user-generated data sets, especially as their size grows.

• Broad algorithmic coverage. JedAI-spatial serves as a library of the state-of-the-art algo-
rithms in the literature, even if they haven’t been applied directly to Geospatial Interlinking
before. These algorithms are implemented by JedAI-spatial-core (cf. Chapter 5).
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Figure 4.2: JedAI-spatial’s model-view-controller architecture.

• Broad application coverage. JedAI-spatial accomodates both academic and commercial ap-
plications, as its code is released under Apache License V2.0. It also supports both batch
and progressive applications. For the latter, the available run-time and/or computations are
limited, e.g., cloud-based applications with a limited budget for AWS Lambda functions1,
which charge whenever they are called. In any type of applications, it is crucial to detect the
most suitable algorithm for the data at hand (e.g., different batch algorithms might be faster
in a LineString-to-LineString scenario and in a Polygon-to-LineString one). To cover this
need, JedAI-spatial’s benchmarking functionality evaluates easily the relative performance
of a large variety of pipelines.

• High usability. JedAI-spatial supports both novice and expert users. The former can apply
complex, high performing pipelines to their data simply by choosing among the available
algorithms, without any knowledge about their internal functionality or their configuration.
See Chapter 6 for more details. Power users can use JedAI-spatial as a library or a Maven
dependency, can manually fine-tune the selected methods and can extend it with more algo-
rithms or pipelines according to their needs.

• Extensibility. Every algorithm in JedAI-spatial implements the interface of its pipeline, which
determines its input and output. Hence, new methods can be seamlessly integrated into
JedAI-spatial as long as they implement the corresponding interface so that they are treated
like the existing ones. Similarly, new pipelines be added as long as they define a new interface
that defines their input and output. All additions should implement the IDocumentation
interface (see Chapter 6 for more details).

• Efficiency and scalability. JedAI-spatial scales well to large datasets both in commodity/stand-
alone systems and in computer clusters that run Apache Spark. For more details, refer to
the implementation improvements in Chapter 5 and the experiments in Chapter 7.

1https://aws.amazon.com/lambda/
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5. Back-end: JS-core

All methods have been re-implemented in JedAI-spatial’s common framework, thus minimizing
the dependencies to other systems and libraries. For most algorithms, we have incorporated im-
provements that significantly enhance their original performance.

5.1 Serial Algorithms

Two are the main types of serial algorithms: the batch ones, which are described in Section 5.1.1,
and the progressive ones, which are presented in Section 5.1.2.

5.1.1 Budget-agnostic algorithms• GIA.nt: Geospatial Interlinking at lArge

• Progressive GIA.nt

Filtering Verification
C

S

T

L

Filtering Verification
C

Scheduling
C’

S

T

L

Figure 5.1: The pipeline of budget-agnostic algorithms.

The methods of this category address Problem 1. To compute all positive topological relations
between the source and the target geometries, S and T , respectively, they follow the two-step
pipeline in Figure 5.1: initially, the Filtering step indexes the source dataset and, if necessary, the
target one, based on the minimum bounding rectangle (MBR) of each geometry – in Figure 1.1,
the MBRs are the dotted rectangles surrounding each geometry. The resulting index is used to
generate C, the set of candidate pairs, which are likely to satisfy at least one topological relation.
Next, the Verification step examines every pair in C as long as their MBRs are intersecting. The
detected topological relations are added to the set of triples L, which is returned as output.

JedAI-spatial organizes these algorithms into the following three subcategories, based on the type
of the index used in Filtering.

Grid-based Algorithms. The input geometries are indexed by dividing the Earth’s surface into
cells of the same dimensions. The index is called Equigrid and its cells tiles. Every geometry is
placed into all tiles that intersect its MBR. JedAI-spatial conveys four state-of-the-art algorithms
of this type, which differ in the definition and use of the Equigrid during Filtering and Verification.

RADON [SDSN17]. Filtering loads both input datasets into main memory and defines an Equigrid
index by setting the horizontal and vertical dimensions of its tiles equal to the average width and
height, respectively, over all geometries. Verification computes the Intersection Matrix for all
candidate pairs [ASN18], taking special care to avoid the ones repeated across different tiles of the
Equigrid.

GIA.nt [PMMK21]. Filtering loads into main memory only the input dataset with the fewest
geometries. The granularity of the Equigrid index is determined by the average dimensions of this
dataset. Verification reads the geometries of the other dataset from the disk, one by one; for each
geometry g, it gathers the candidates, whose MBR intersects the same tiles as MBR(g) as well as
MBR(g) itself, and computes their Intersection Matrix, adding the detected links to L.

Static variants. Unlike the dynamic Equigrid of the above algorithms, whose granularity depends
on the input data, Silk-spatial [SK16] employs a static Equigrid, whose granularity is predetermined
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(by the user), independently of the input characteristics. Even though the resulting index might
be too fine- or coarse-grained for the input datasets, this approach is based on the idea that the
resulting candidate pairs are filtered during Verification, which discards those with disjoint MBRs.
To put this approach into practice, JedAI-spatial includes the custom methods Static RADON
and Static GIA.nt, where the index granularity is manually defined.

Implementation improvements. RADON’s implementation is publicly available through LIMES1.
However, we re-implemented it in JedAI-spatial so as to significantly improve its performance.
First, we reduce the run-time of Filtering by skipping the swapping strategy, which is used to
identify the input dataset with the smallest overall volume. This has no impact on its Filtering,
given that the Equigrid granularity considers both input datasets. Second, we reduce RADON’s
memory footprint to a significant extent. Instead of a hashmap that stores all examined pairs in
main memory to avoid verifying the same candidate pairs more than once, we use the reference
point technique [DS00], verifying every candidate pair only in the tile that contains the top left
corner of their intersection; as an example, consider the geometries g3 and g4 in Figure 1.1: they
co-occur in tiles (4,A), (4,B), (5,A), (5,B), but are verified only in (5,A), where their reference
point (black dot) lies. Moreover, unlike the original implementation, which refers to all geometries
by their URL (of type String), we use ids for this purpose (of type int). We also use the data
structures of the GNU Trove library [FE13], which work with primitive data types (e.g., the 4-bytes
int instead of the 16-bytes Integer). The same improvements apply to the methods corresponding
to Silk-spatial, namely the static variants. For GIA.nt, we use the open-source implementation
provided by the authors of [PMMK21], which already involves these optimizations2.

Partition-based Algorithms. They rely on a (usually vertical) sweepline that moves across the
Earth’s surface, stopping at some points. Filtering sorts all input geometries in ascending order
of their lower boundary on the horizontal axis, xmin. Verification is restricted to pairs of source
and target geometries whose MBRs simultaneously intersect the sweepline whenever it stops. The
process terminates once the sweepline passes over all geometries.

Plane Sweep [BKS93]. This cornerstone algorithm applies the above process to all source and
target geometries. Before verifying a pair of geometries, it ensures that they overlap on the y-axis.

PBSM [PD96]. This algorithm splits the given geometries into a manually defined number of
orthogonal partitions and applies Plane Sweep inside every partition. Filtering defines the parti-
tions, assigns every geometry to all partitions that intersect its MBR and sorts all geometries per
partition in ascending xmin. Verification goes through the partitions and in each of them, it sweeps
a vertical line l, computing the Intersection Matrix for each pair of geometries that simultaneously
intersect l and overlap on the y-axis. To avoid repeated verifications of the same geometry pairs
across different partitions, it uses the reference point technique [DS00].

Stripe Sweep. To lower the time complexity of Plane Sweep, this new algorithm sorts only the
source geometries during Filtering. These geometries are then partitioned into several vertical
stripes, whose length is equal to their average width. Every source geometry is placed in all
stripes that intersect its MBR. Verification probes every target geometry t against the stripes and
aggregates the set of the source geometries that intersect the same stripes with t; this way, it
gathers the distinct candidate geometries, avoiding redundant verifications. This set is further
refined by retaining only the candidate pairs with intersecting MBRs.

Implementation improvements. Plane Sweep and PBSM employ a dynamic data structure, called
sweep structure, which stores in main memory the active geometries, i.e., the ones whose MBR
intersects the sweep-line in its current position. JedAI-spatial supports two different sweep struc-
tures: (i) List Sweep maintains one linked list for each input dataset. In every move of the
sweepline l, the contents of both lists are updated, inserting the geometries with an intersecting
MBR and removing the expired ones, i.e., the geometries with xmax < lx. (ii) Striped Sweep splits

1https://github.com/dice-group/LIMES
2https://github.com/giantInterlinking/prGIAnt
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the given datasets into n stripes and uses a different List Sweep per stripe. After preliminary
experiments, the length of each stripe on the horizontal axis was set to the average width of the
source geometries.

Stripe Sweep can use two different data structures for storing the source geometries per stripe: (i)
a hash map, which associates every stripe id with the corresponding source geometry ids, and (ii)
an STR-Tree [LEL97], which indexes the source geometries in each stripe. The hash map does not
ensure the overlap on the y-axis before checking the MBR intersection of candidate pairs, unlike
the STR-Tree. For the implementation of the STR-Tree, we use the optimized implementation
provided by the JTS library.3

Tree-based Algorithms. As suggested by their name, these algorithms rely on state-of-the-art
spatial tree indices. During Filtering, they index the smallest input dataset. During Verification,
every geometry g from the other dataset queries the tree index; its candidates are located in the
leaf nodes whose MBR intersects with MBR(g). For all candidate geometries with an MBR that
intersects MBR(g), the Intersection Matrix is computed.

R-Tree [Gut84]. In this index, every non-leaf node contains pointers to its child nodes along with
an MBR that encloses the span of all the MBRs in its children; every leaf node contains up to M
geometries. When an entry is added to a full node, the node is split into two new ones, which are
initialized with the two largest geometries. The remaining geometries are added to the node whose
MBR expands the least after insertion.

Quadtree [FB74]. In this index, every non-leaf node has exactly four children, dividing the space
into four quadrants: NorthEast (NE), NorthWest (NW), SouthEast (SE) and SouthWest (SW).
Again, every node has a maximum capacity M . When M is reached, the corresponding cell is split
into four new ones, its children.

CR-Tree [KCK01]. This index compresses the R-Tree so that it leverages the L1 and L2 cache
memory of CPUs, which have faster access times. Using the Quantized Relative Representation of
MBR, it minimizes the size of the MBRs, which dominate the space requirements. CR-Trees are
usually wider and smaller than R-Trees, achieving higher time efficiency, while occupying ∼60%
less memory.

Implementation improvements. For R-Tree and CR-Tree, we employ the data structures of GNU
Trove, which work with primitive data types, offering high time efficiency and low memory foot-
print. For Quadtree, we use the optimized implementation of the JTS library.

5.1.2 Budget-aware algorithms

• GIA.nt: Geospatial Interlinking at lArge

• Progressive GIA.nt

Filtering Verification
C

S

T

L

Filtering Verification
C

Scheduling
C’

S

T

L

Figure 5.2: The pipeline of budget-aware algorithms.

This category encompasses methods that address Problem 2. Their goal is to maximize the num-
ber of related geometry pairs that are detected after consuming the available budget BU , which
determines the maximum number of verifications. To this end, they follow the three-step pipeline
in Figure 5.2. Filtering is identical with that of budget-agnostic methods, producing a set of can-
didate pairs C. Scheduling first refines C by discarding the pairs with non-overlapping MBRs.
Then, it defines the processing order of the remaining pairs so that the likely related ones are
placed before the unlikely ones. The new set of candidate pairs C ′ is forwarded to Verification,
which carries out their processing and returns the set of detected links, L.

3https://locationtech.github.io/jts/
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The gist of budget-aware algorithms is the combination of Scheduling with Filtering, as Verifica-
tion remains the same in all cases. Based on the co-occurrence patterns of grid-based Filtering,
Scheduling assigns a score to every pair of candidates with intersecting MBRs. The higher this
score is, the more likely the constituent geometries are to satisfy at least one topological relation.
JedAI-spatial offers the following weighting schemes [PMMK21]:

• Co-occurrence Frequency (CF) measures how many tiles simultaneously intersect the MBRs
of the source and the target geometry.

• Jaccard Similarity (JS) normalizes CF by the number of tiles intersecting each geometry.

• Pearson’s χ2 test extends CF by assessing whether the given geometries appear independently
in the tiles.

• Minimum Bounding Rectangle Overlap (MBRO) returns the normalized overlap of the MBRs
of the two geometries.

• Inverse Sum of Points (ISP) amounts to the inverse sum of boundary points in the two
geometries, thus promoting the simpler candidate pairs.

• Composite schemes. They combine two of the aforementioned, atomic schemes in the follow-
ing way: the primary one is used for scheduling all pairs, while the secondary one is used for
resolving the ties.

These weighting schemes are leveraged by the following algorithms:

Progressive GIA.nt [PMMK21]. It applies the same Filtering as its budget-agnostic counterpart
and, then, its Scheduling retains the top-BU weighted valid candidate pairs.

Progressive RADON [PMMK21]. It applies RADON’s Filtering and defines the processing order
of the resulting tiles by sorting them in increasing or decreasing number of candidate pairs. Inside
every tile, it identifies the non-redundant candidate pairs using the reference point technique.
Those with intersecting MBRs, are processed in decreasing score, as determined by the selected
weighting scheme.

Iterative Algorithm. To ensure that every source or target geometry is represented in the BU
retained candidate pairs, this new algorithm applies the same Filtering as GIA.nt and its Scheduling
retains ⌈BU/|S|⌉ or ⌈BU/|T |⌉ candidates per source or target geometry, respectively. The top-
weighted BU candidates are then forwarded to Verification.

Geometry-ordered Algorithm. This is another new progressive algorithm. It assumes that the larger
the average weight of a geometry is, the more likely it is to be related to its candidates. Thus, it
applies the same Filtering as GIA.nt and then, it estimates the average weight per target or source
geometry. After sorting the geometries in decreasing average weight, it iterates once more over the
target dataset to select the BU retained pairs from the candidates of the top-weighted geometries.
Optionally, the retained candidates can be sorted in decreasing weight.

Dynamic Progressive GIA.nt [PMMKar]. The core idea of this approach is that whenever a new
pair of geometries (s, t) is detected as qualifying, we boost the weight of all candidate pairs that are
associated with s and t and are still located in the priority queue so that they are verified earlier.
This is useful for example in cases where the source dataset involves long LineString geometries
like roads, whereas the target dataset involves Polygon geometries buildings: the more buildings a
road touched so far, the higher should be the weight of the rest of the candidate buildings, as it is
likely a main road.
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Figure 5.3: The three-step pipeline of parallel, budget-agnostic algorithms in JedAI-spatial.

5.1.3 Parallel Algorithms

To scale to voluminous datasets, JedAI-spatial exploits the massive parallelization functionalities
offered by the state-of-the-art framework of Apache Spark. JedAI-spatial has aggregated all rele-
vant algorithms in the literature that are crafted for the same parallelization framework and the
same types of geometries, i.e., LineStrings and Polygons [PKNK18] (we exclude SIMBA [XLY+16],
which exclusively applies to points).

To integrate the main parallel algorithms into JedAI-spatial, we adapted their functionality so that
they implement the three-step pipeline that is shown in Figure 5.3:

1. The Preprocessing Stage reads the source and target datasets from HDFS, transforms them
into Spark RDDs and splits each of them into partitions according to a predetermined ap-
proach (e.g., QuadTree).

2. The Global Join Stage joins the source and target partitions with a spatial overlap and assigns
every pair of overlapping partitions to a different worker for processing.

3. In the Local Join Stage, each worker interlinks every pair of overlapping source and target
partitions.

Below, we explain how the main parallel interlinking algorithms are adapted to this three-step
pipeline.

Budget-agnostic algorithms. JedAI-spatial conveys the following four state-of-the-art parallel
approaches:

GeoSpark [YWS15]. This algorithm is now part of Apache Sedona4. During Preprocessing, it uses
sampling to partition the input data with a KDB-Tree or a Quadtree. The geometries that are
not covered by the index are added to an overflow partition. The overlapping source and target
partitions are assigned to the workers, during the Global Join Stage. The Local Join Stage verifies
the candidate pairs through a nested loop join or indexes the source geometries with an R-Tree or
a Quadtree that is queried by the target ones.

Spatial Spark [YZG15]. This algorithm supports two functionalities:

1. The broadcast join supports up to 2GB of source data. During the Preprocessing Stage, the
source dataset is indexed by an R-Tree, which is then broadcast as a read-only variable to all
workers. Every worker also receives a disjoint partition of the target geometries. The Global
Join Stage is skipped. During the Local one, every worker iterates over its target geometries,
retrieves the candidate source ones from the R-Tree and verifies those intersecting the target
MBR.

4http://sedona.apache.org
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2. The partition join overcomes the size limit of the broadcast join by implementing all three
steps of JedAI-spatial’s framework. Depending on the user’s choice, the Preprocessing Stage
indexes the entire input data (in case of a Fixed Grid Partition, whose dimensions, dimX ×
dimY are defined by the user) or a sample of the source and target data (in case of Binary
Split or Sort Tile Partitions, which use an R-Tree). The Global Join Stage assigns the
overlapping source and target partitions to the same worker so that their candidate pairs are
verified locally, during the third stage.

Magellan.5 This algorithm relies on the Z-Order Curves, which define an Equigrid on the Earth’s
surface during the Preprocessing Stage. The number of tiles in this grid is determined as 2p, where
p is the precision parameter that is set by the user. Apparently, the higher the precision is, the
more fine-grained is the resulting Equigrid index. The Global Join Index sends to the same workers
the source and target geometries that intersect the same tiles. During the Local Join Index, every
worker checks every candidate pair and verifies those with intersecting MBRs.

Location Spark [TYM+16, TYM+20]. Its Preprocessing partitions the source and target datasets
using a Grid, R-Tree or Quadtree index. Then, its Query Plan Scheduler performs a skew analysis
in order to partition the data as evenly as possible, balancing the workload among the workers.
In essence, it repartitions the skewed partitions, which include at least twice as many geometries
as the smallest one. After joining the overlapping source and target partitions during the Global
Join Stage, a local index is constructed for the source geometries of every worker using an R-Tree,
QuadTee or EquiGrid. The Local Join Stage queries the index with the target geometries and
verifies the candidate pairs with intersecting MBRs.

Parallel GIA.nt [PMMK21]. The Preprocessing estimates the average width and height of the
source geometries. These dimensions, which are broadcast to all workers, define the Equigrid that
partitions both input datasets. The next stage joins the overlapping source and target partitions,
while the Local Join Stage creates an Equigrid of the source geometries inside every worker, using
the broadcast dimensions. The target geometries query the index to retrieve the candidates with
intersecting MBRs, which are then verified. The reference point technique eliminates all repeated
verifications.

Implementation Improvements. The most important enhancement to all parallel algorithms is the
use of the reference point technique during the Local Join Stage in order to avoid all repeated
verifications. This has replaced GeoSpark’s groupBy, Spatial Spark’s call to distinct, Magellan’s
dropDuplicates and Location Spark’s call to reduceByKey. All these functions shuffle the output
data along the cluster, imposing significant overhead.

We also replaced Magellan’s Extended Spark SQL with Spark RDDs for higher efficiency. For
Location Spark, we removed the Spatial Bloom Filter; it is mainly used for spatial range queries,
but in our case, where every geometry is assigned to multiple partitions, it imposes an unnecessary
overhead. From GeoSpark, we removed the R-Tree from the indexes supported by the Global Join
Stage: due to sampling, its overflow bucket typically contains geometries from the entire input
datasets and, thus, it is not disjoint from the rest of the partitions; as a result, the reference point
technique cannot be used to eliminate redudant verifications. For Parallel GIA.nt, we employ the
publicly available code that was used in [PMMK21].

Budget-aware algorithms. JedAI-spatial parallelizes all serial budget-aware algorithms de-
scribed in Section 5.1.2. The Preprocessing and Global Join Stage are identical with Parallel
GIA.nt. Then, the overall budget BU is split among the partitions assigned to every worker based
on the portion of candidate pairs it involves. The Local Join Stage applies the budget-aware
algorithm to the data assigned to every worker, using the corresponding local budget.

5https://github.com/harsha2010/magellan
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6. Front-end: JS-gui

JedAI-spatial support users of any experience level, offering two wizard-like user interfaces that
simplify its use to a great extent:

1. The command line interface. JS-core produces an executable jar, which when run, guides
users in applying the desired pipeline to their data.

2. The Web application interface. JS-gui is available as a Docker image, which, when deployed,
runs a Web application that seamlessly supports both serial and parallel execution (the latter
relies on Apache Livy1).

It both cases, users do not need to write code in order to interlink their spatial data. They are
merely required to provide the following input:

1. the paths of their datasets,

2. reading parameters for the dataset files (e.g., the separator character in CSV files),

3. the desired pipeline, i.e., serial or parallel, budget-aware or budget-agnostic, and

4. the desired algorithm among the available ones for the selected pipeline.

This applies even to the parallel pipelines that run on top of Apache Spark. In both interfaces,
users can also inspect the input data and store the detected links to a specific path.

Special care has also been taken to facilitate the comparison between the available algorithms,
regardless of their space tiling and budget-awareness category. JedAI-spatial acts as a workbench,
encompassing a special menu that summarizes the performance of the latest runs with respect
to the effectiveness measures (i.e., recall, precision, f-measure and progressive geometry recall, if
applicable) as well as the efficiency ones (i.e., the run-time in total and in every step of the selected
pipeline). This workbench functionality, which is shown in Figure 6.1, also allows for examining the
impact of configuration parameters on the performance of a particular algorithm (e.g., by changing
the granularity of the grid index).

Figure 6.1: The workbench window of JedAI-spatial’s Graphical User Interface.

Auxiliary Components. In the following, we briefly describe the rest of the components in
Figure 4.2, which play an important role in the characteristics offered by JedAI-spatial’s user
interfaces.

1https://livy.apache.org
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Data Model. This component implements the classes and the data structures that lie at the core
of JedAI-spatial. The cornerstone is the GeometryProfile class, which supports all heterogeneous
data formats mentioned in Section 4. This is accomplished by representing every geometry as
a set of name-value pairs, which capture the textual information about an entity, coupled with
a Geometry object of the JTS library, which is accompanied by its MBR and the method for
computing an Intersection Matrix. Note that the simple, yet versatile GeometryProfile class
facilitates the visualization and inspection of input data through JS-gui.

Documentation. This component essentially corresponds to a Java interface that is implemented
by all algorithms. The interface conveys methods providing textual information about the most
important aspects of each algorithm: its name, a summary of its functionality, the name of every
configuration parameter, a short description of every parameter, the domain of every parame-
ter (i.e., its default, minimum and maximum values) as well as the configuration of the current
algorithm instantiation. This information is provided to the user through tooltips in the Web
application and through the help option of the command line interface.

Parameter-configuration. JedAI-spatial facilitates the fine-tuning of any supported algorithm, as a
poor parameterization invariably leads to poor performance. To this end, this component supports
three modes:

1. Default configuration a-priori sets all parameters of each algorithm to values that empirically
achieve reasonable performance across different datasets. This mode allows lay users to apply
the desired pipeline to their data simply by choosing among the available methods.

2. Manual configuration enables power users to fine-tune an algorithm themselves, based on
their own experience or on the information provided by the Documentation component.

3. Grid search automatically identifies the optimal configuration through a brute-force approach
that tries all values in the domain of each parameter. In the case of budget-agnostic pipelines,
the parameterization that minimizes the run-time is selected as the optimal one, while for
budget-aware pipelines, the optimal parameterization is the one maximizing Progressive Ge-
ometry Recall.
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Table 7.1: Technical characteristics of the real pairs of datasets for Geospatial Interlinking.
D1 D2 D3 D4 D5

Source Dataset AREAWATER AREAWATER Lakes Parks Roads
Target Dataset LINEARWATER ROADS Parks Roads Buildings
#Source Geometries 2,292,766 2,292,766 8,326,942 9,831,432 72,339,926
#Target Geometries 5,838,339 19,592,688 9,831,432 72,339,926 114,796,567
Cartesian Product 1.34 · 1013 4.49 · 1013 8.19 · 1013 7.11 · 1014 8.30 · 1015

Candidate Pairs 6,310,640 15,729,319 19,595,036 67,336,808 257,075,645
#Qualifying Pairs 2,401,396 199,122 3,841,922 12,145,630 1,041,562
#Contains 806,158 3,792 267,457 5,147,704 274,953
#CoveredBy 0 0 1,944,207 47,253 82,828
#Covers 832,843 4,692 267,713 5,284,672 274,966
#Crosses 40,489 106,823 217,198 5,700,257 313,566
#Equals 0 0 61,712 2,047 18,909
#Intersects 2,401,396 199,122 3,841,922 12,145,630 1,037,153
#Overlaps 0 0 488,814 42,331 54,810
#Touches 1,554,749 88,507 986,522 1,210,230 331,166
#Within 0 0 1,943,643 47,155 81,567
Total Relations 5,635,635 402,936 10,019,188 29,627,279 2,481,027

7. Comparative Analysis

7.1 Experimental Setup

All serial methods and experiments were implemented in Java 8. The experiments were ran on a
server with Intel Xeon E5-4603 v2 @ 2.2GHz, 128 GB RAM, running Ubuntu 14.04.5 LTS. For all
time measurements, we used a single physical core and performed three repetitions, reporting the
average. For the verification of geometry pairs, we used the JTS Topology Suite, version 1.16.1

All parallel methods and experiments were implemented in Scala 2.12 using Spark 2.4.4. Most
of the experiments were performed on a Hadoop cluster consisting of a single node with 32 cores
Intel(R) Xeon(R) CPU E5-4603 v2 @ 2.20GHz2 and 128GB DDR3 RAM, 1.6 Tb mechanical disk.
Unless stated otherwise, the experiments performed on the single node used 16 Executors with
2 cores each and 7GB of memory, and the experiments performed on the two nodes, used 15
Executors with 4 cores each and 10GB of memory. For each time measurement, we performed 5
repetitions and took the average run-time.

Datasets. The technical characteristics of the real datasets we use in our experiments are re-
ported in Table 8.2. All of them have been widely used in the literature [TBMT19, EM15] and
are publicly available.3 They contain public data about area hydrography (AREAWATER), linear
hydrography (LINEARWATER), roads (ROADS) and all edges (EDGES) in USA. They also con-
tain the boundaries of all lakes (Lakes), parks or green areas (Parks), roads and streets (Roads)
as well as of all buildings (Buildings) around the world. Each column of Table 8.2 shows statistics
for a pair (D1–D5) of interlinked datasets. Note that in D1, D2 and D4, the source geometries are
Polygons and the target ones LineStrings, and vice versa for D5. In contrast, D3 is homogeneous,
as it exclusively pertains to Polygons.

1https://github.com/locationtech/jts
2The system uses hyper-threading. Hence, it has 16 physical cores.
3http://spatialhadoop.cs.umn.edu/datasets.html
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Figure 7.1: Scalability analysis of the serial budget-agnostic algorithms with respect to their Fil-
tering time (in seconds).

Figure 7.2: Scalability analysis of the serial budget-agnostic algorithms with respect to their Veri-
fication time (in minutes).

7.2 Budget-agnostic Algorithms

In this analysis, we assess the scalability of each method over the AREAWATER-LINEARWATER
dataset from the US Census Bureau TIGER files [EM15, TBMT19, PMMK21], which includes
USA’s Area and Linear Hydrography – D1 in Table 8.2. We split this dataset into 10 subsets of
increasing size, from 10% of source and target geometries to 100% with a step of 10%. Special care
was taken to ensure that the number of related pairs increases in proportion to the size of the input
data. We examine the relative performance of JedAI-spatial’s budget-agnostic algorithms. Given
that these methods produce the same results, we assess their relative performance with respect to
their efficiency, estimating the time required to complete each step in the pipeline of Figure 5.1:
(i) the filtering time, tf , and (ii) the verification time, tv.

The resulting filtering and verification times appear in Figures 7.1 and 7.2, respectively. Each
figure encompasses a separate diagram for each algorithm category, but all diagrams use the same
scale in order to facilitate the comparisons between the three categories.

Starting with Figure 7.1, we observe that for all algorithms, the Filtering step is completed within
a few seconds, even when processing the entire D1. The reason is that Filtering constitutes a quick
process that considers exclusively the MBR of the input geometries, thus disregarding their actual
complexity. Yet, it manages to reduce the number of candidates by a whole order of magnitude; e.g.,
for the entire dataset, it reduces them from 1.34·1013 (Cartesian Product) to 6,310,640 candidate
pairs with intersecting MBRs (among them, 2,401,396 pairs of source and target geometries are
topologically related, satisfying at least one relation).

As expected, the algorithms that consider only the source dataset when building their index are
much faster than those iterating over both input datasets. The former category includes (Static)
GIA.nt, Stripe Sweep and the tree-based algorithms. All these algorithms scale sublinearly with
the increase of the input data: from 10% to 100%, their tf raises by 5 (Stripe Sweep) to 8 (CR-
Tree) times. The rest of the algorithms scale linearly with the increase of the input data. We
also observe that the static variants of the grid-based algorithms are significantly faster, as they
save the cost of deriving the index granularity from the characteristics of the input datasets – they
merely index them. Finally, we notice that the filtering time of each partition-based algorithm
is practically stable, regardless of the underlying data structure (List Sweep or Striped Sweep for
Plane Sweep and PBSM, hash map or STR-Tree for Stripe Sweep). Overall, Quadtree and Stripe
Sweep exhibit the fastest Filtering.

Regarding the Verification time, we notice in Figure 7.2 that it constitutes the bottleneck of
Geospatial Interlinking, being two orders of magnitude larger than Filtering time. This is caused by
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Figure 7.3: Scalability of parallel, budget-agnostic algorithms.

the complexity of the input geometries, which determines the cost of calculating each Intersection
Matrix. We also observe that the algorithms with the fast, source-based Filtering are now slower,
because they read the target geometries from the disk, one by one. This overhead is included in
their tv, increasing linearly with the size of the input data, hence the larger deviations over larger
subsets. The algorithms (Static) RADON, Plane Sweep and PBSM are faster (in this order),
because they a-priori load the target geometries into main memory. Note, though, that Plane
Sweep and PBSM are by far the slowest algorithms when using a Linked List to maintain their
active geometries, due to the high cost of its operations. The performance of both algorithms is
significantly improved when using Stripes to reduce the maintenance overhead. The situation is
even worse for CR-Tree, which is excluded from Figure 7.2, because its run-time over the smallest
subset is 235 minutes, exceeding the time required by most other algorithms even for the largest
subset. The reason is the high cost of retrieving the candidates for every target geometry, due to
the compression of MBRs. Finally, we should stress that (Static) RADON is faster than (Static)
GIA.nt by 5% to 12%, which is in contrast with their relative performance in [PMMK21], due to
the significant impact of the implementation improvements we have incorporated in JedAI-spatial.
Yet, GIA.nt involves the fastest verification among the algorithms that read the target geometries
from the disk, with Stripe Sweep being slightly slower.

Figure 7.3 reports the overall wall-clock time (in seconds) of the parallel budget-agnostic algorithms,
which are fine-tuned as follows: GeoSpark (Apache Sedona) with KDB-Tree partitioning and local
indexing with R-Tree, Spatial Spark with a 512x512 Fixed Grid Partitioning, Location Spark with
Quadtree partitioning and local indexing with R-Tree and Magellan with precision 20; for Parallel
GIA.nt, we have interchanged the source with the target datasets. Parallel GIA.nt is consistently
the fastest algorithm, with Location Spark following in close distance over the largest subsets, where
its skew analysis bears fruit, and GeoSpark in the third place. These three algorithms require less
than half the overall run-time of Spatial Spark, with Magellan lying in the middle of these two
extremes. All algorithms scale sublinearly with the size of the input data: from 10% to 100%,
their run-time increases by 3 (Location Spark, Parallel GIA.nt) to 7 (Spatial Spark) times. All
are significantly faster than the serial algorithms, especially over the larger subsets, where the
overhead of Apache Spark pays off: for 100%, the slowest parallel algorithm (Spatial Spark) is 3.2
times faster than the best serialized algorithm (RADON).

Evaluating JedAI-Spatial on Hopsworks and CREODIAS. Regarding the experimental
evaluation of JedAI-Spatial on the Hopsworks cluster that has been set up in CREODIAS, we
have successfully detected all topological relations for the D5 dataset, which almost 190 million
geometries. The original size of the TSV files is 50 GB, which corresponds to almost 400 GB when
transformed into RDF Ntriples. For this dataset, we used 25 executors with 6120 MB of memory
and 2 virtual cores per executor. The entire processing was completed in less than 12 minutes.
The total size of the input datasets and the produced output is almost 1 TB in Ntriples format.
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Table 7.2: Performance of (a) Static and (b) Dynamic Progressive GIA.nt over D5 for all weighting
schemes in comparison to the optimal (Opt.) and the random (Rnd.) approach for budgets of 5M
and 10M verifications.

BU = 5M BU = 10M

Opt. Rnd. Progressive GIA.nt Opt. Rnd. Progressive GIA.nt
CF JS χ2 MBRO ISP CF JS χ2 MBRO ISP

PGR 0.890 0.039 0.025 0.065 0.064 0.159 0.014 0.948 0.068 0.040 0.110 0.112 0.224 0.028
Recall 1.000 0.072 0.049 0.144 0.141 0.246 0.028 1.000 0.115 0.076 0.227 0.228 0.338 0.060
Precis. 0.207 0.015 0.010 0.030 0.029 0.051 0.006 0.103 0.012 0.008 0.024 0.024 0.035 0.006
tr (min) - - 23.4 23.6 23.3 23.4 23.4 - - 23.4 22.5 23.5 23.2 23.3
ts (min) - - 17.6 19.0 18.8 17.7 17.7 - - 18.5 17.1 18.1 18.0 17.6
tv (min) - - 2.3 4.3 1.4 2.5 2.0 - - 3.5 4.0 3.8 3.0 3.4
tw (min) - - 43.3 46.9 43.5 43.6 43.2 - - 45.4 43.6 45.4 44.2 44.3

(a) Static Parallel Progressive GIA.nt
PGR 0.890 0.039 0.146 0.158 0.241 0.211 0.111 0.948 0.068 0.167 0.182 0.270 0.295 0.127
Recall 1.000 0.072 0.182 0.183 0.277 0.323 0.133 1.000 0.115 0.195 0.231 0.324 0.423 0.159
Precis. 0.207 0.015 0.038 0.038 0.057 0.067 0.028 0.103 0.012 0.020 0.024 0.034 0.044 0.016
tr (min) - - 23.4 23.6 23.4 23.4 23.4 - - 23.3 22.5 23.5 23.2 23.8
ts (min) - - 17.6 18.6 17.8 18.1 18.2 - - 17.5 19.4 18.4 17.5 17.8
tv (min) - - 3.5 1.5 2.2 3.0 3.1 - - 4.2 2.5 3.1 4.2 3.4
tw (min) - - 44.5 43.7 43.4 44.5 44.7 - - 45.0 44.8 45.0 44.9 45.0

(b) Dynamic Parallel Progressive GIA.nt

7.3 Budget-aware Algorithms

Table 7.2 reports the performance of static and dynamic Parallel Progressive GIA.nt over D5 for two
different budgets, BU=5M and BU=10M. In addition to the scheduling (ts) and verification (tv)
time, we report the overhead time, tr, which is the aggregate time needed for all other computations,
such as the initialization of Spark context, the spatial partitioning and the computation of the
granularity of the tiles. The overall wall-clock run-time (tw) corresponds to the sum of these three
time measurements.

Notice that both scheduling and verification are lower than the overhead time, mostly because of
spatial partitioning. Spatial partitioning collects a random sample of the source geometries in order
to built the spatial partitioner and then redistributes all the geometries, invoking data shuffling.
This procedure remains the same regardless the size of the budget and adds significant overhead
to the overall execution. Moreover, the Verification step is faster than the Scheduling step, as
most of the geometries in D5 are small and simple, thus allowing for the quick computation of the
intersection matrix. On the contrary, the Scheduling step needs to examine all the candidate pairs
that passed the Filtering step, which comprises of millions of geometry pairs.

Most importantly, we observe that both algorithms are capable of processing the ∼190 million
geometries of D5 in around 45 minutes. Both algorithms underperform the optimal approach, but
significantly outperform the random ordering with respect to all measures. The recall remains
low, due to the small maximum budget, which was determined by the available main memory
resources. Larger budgets would allow us to detect more topologically related geometries. Note
also that Dynamic Progressive GIA.nt consistently outperforms its static counterpart, producing
results twice as good in certain cases. MBRO also proves to be the most suitable weighting scheme.

7.3.1 Scalability Analysis

Figure 7.4 displays the strong scaling experiments of the parallel implementation of the static and
dynamic progressive algorithms. In strong scaling, we examine how the overall computational time
of the job scales as we increase the number of available processing units. In this experiment, the
job is defined by the performance of progressive algorithms in combination with MBRO weights
and BU=20M, over the most time-consuming dataset pair, D4. We observe that both algorithms

D3.6 Software for interlinking geospatial RDF data sources-v2 21



H2020-825258

2 4 8 16

0

1

2

3

4

5

6

7

8

sp
e
e
d
u
p

#cores

Static Progressive GIA.nt Dynamic Progressive GIA.nt Ideal
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Figure 7.5: Scalability of Static (left) and Dynamic (right) Parallel Progressive GIA.nt over D4.

scale sub-linearly and close to the ideal speedup, and we can only notice a small deceleration in the
case of 16 processing units. This is because both algorithms invoke data shuffling in certain points
in order to redistribute the geometries (i.e., spatial partitioning) and to compute the granularity
of the tiles. By increasing the number of the processing units, more extensive data shuffling is
performed, adding the extra overhead to the execution that leads to a sub-linear speedup. Overall,
the total wall-clock time of Static (Dynamic) Parallel Progressive GIA.nt is reduced from 335.2
(337.5) min for 2 cores to 51.6 (52.3) min for 16 cores.

In Figure 7.5, we report the scalability of Static and Dynamic Parallel Progressive GIA.nt by
keeping the same number of the processing units, while increasing the size of the job, i.e., by
gradually increasing their budgets: BU ∈ {5M, 10M, 20M, 30M}. Every algorithm is combined
with MBRO weights and applied to D4. The overall wall-clock time is divided into the scheduling
(ts), the verification (tv) and the overhead (tr) time. We observe that both ts and tr remain
constant, while tv increases in proportion of the size of the budget. This is because the computations
included in tr are irrelevant to the budget size, and budgets of such sizes are not enough to
significantly affect the performance of the Scheduling step. For D4, both algorithms use around
2,000 partitions with small local budgets and, hence, with small local priority queues. As a result,
the time needed to push/pop elements from these queues is negligible and does not have a significant
impact to the overall performance of the Scheduling step. On the contrary, the size of the budget is
decisive for the duration of the Verification step. It is worth noting that both algorithms perform
quite similarly, especially with respect to tr and ts, but we can notice that the Verification step of
the Dynamic Progressive GIA.nt is slightly slower, especially in BU=30M, due to the continuous
update of the processing order.

7.3.2 Discussion

We now summarize the main findings of the experiments presented above.
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The progressive methods rely on the heuristics of weighting schemes, thus providing no performance
guarantees. Instead, they depend on two factors: (i) the characteristics of the input data (e.g.,
the higher the proportion of qualifying pairs over the candidate ones, the better the performance),
and (ii) the size of the budget. Regarding the latter, there is a clear trade-off between recall and
precision in Table 7.2: larger budgets increase recall at the cost of lower precision and vice versa,
for smaller budgets.

To assess the performance of progressive methods, we compared them with two baseline methods:
the Optimal Scheduling, which places all qualifying pairs before the non-qualifying ones, and the
Random Scheduling, which produces an arbitrary ordering of all candidate pairs. The closer
the progressive methods are to the former baseline method, the better. Our experimental results
demonstrate that even though there is still room for improving their performance, they significantly
outperform the latter baseline. In fact, MBRO consistently outperforms Random Scheduling in
combination with Static Progressive GIA.nt, as shown in Table 7.2. The same applies to the rest
of the weighting schemes when they are combined with Dynamic Progressive GIA.nt, especially
when they form composite schemes with MBRO as the secondary one [PMMKar].

Regarding time efficiency, the filtering time, tf , accounts for a negligible portion of the overall run-
time, which is dominated by the verification time, tv. In Table 7.2, we notice that the scheduling
time, ts, is much higher than tf , albeit significantly lower than tv in most cases. In general, the
scheduling time is significant with respect to tv, if (i) the budget is very low, yielding very low
tv, (ii) the selected geometries are very small and simple, or (iii) the number of candidate pairs
with intersecting MBRs is very high. The more candidate pairs have intersecting MBRs, the more
time consuming is Scheduling, because its time complexity depends linearly on their number. Note
that ts is not affected by the tiles intersecting the MBR of each target geometry, because their
contents, i.e., the source geometry ids they contain, are efficiently added to the current set of
candidate pairs and those with disjoint MBRs are later discarded. Most importantly, though, ts
involves the time required to read the target geometries from the disk, unlike tv, since progressive
verification merely processes the top-weighted target geometries, which have already been stored
in main memory during Scheduling.

In the case of Dynamic Progressive GIA.nt, the overhead time to, which is required for weight
updating, is rather low when comparing its value to the corresponding verification time (seconds
or minutes in comparison to hours). The reason is that the algorithm re-ranks only the pairs among
the top-BU that have not been verified so far. In fact, very few pairs are re-weighted whenever a
new topologically related pair is detected.

Regarding the relative run-time of the five weighting schemes, we observe that CF consistently
yields the highest verification time, followed by MBRO. All other schemes are much faster,
yielding similar verification times, with ISP being consistently the fastest one. This is explained
by the complexity of the top-weighted candidate pairs in terms of their area as well as the number
of their boundary points [PMMKar]. The smaller both measures are for both source and target
geometries, the faster is the corresponding progressive verification time. Regarding the scheduling
time, though, it remains relatively stable across all weighting schemes, as it is dominated by the
time required to read the target geometries from the disk.

Considering the relative effectiveness of the weighting schemes, we observe that CF exhibits the
lowest performance in most cases, because it produces scores of very low distinctiveness and has a
limited scope, as its search space is reduced to geometries with large MBRs. The characteristics
of the other weighting schemes are highly correlated, with MBRO excelling in distinctiveness,
thus being ideal for the secondary role in a composite scheme. In this way, it manages to boost
the performance of all other weighting schemes, even CF , in the context of Dynamic Progressive
GIA.nt [PMMKar].
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8. Conclusions

In this deliverable, we presented JedAI-spatial, an open-source system that acts as a library of the
state-of-the-art algorithms for Geospatial Interlinking. For the existing algorithms, some of which
have not been applied to Geospatial Interlinking before, JedAI-spatial incorporates optimized im-
plementations, while also including new, high-performing techniques. JedAI-spatial facilitates their
application by organizing them into a novel 3D taxonomy and by offering two wizard-like inter-
faces that assume no expert knowledge. Their benchmarking functionality allows for evaluating
the relative performance of the available algorithms and for examining the impact of their internal
configuration on their performance. We elaborated on JedAI-spatial’s architecture, describing the
components of its back- and front-end, and performed scalability analyses, highlighting the relative
performance of all serial and parallel budget-agnostic algorithms.

8.1 Ongoing Work

The following work is currently in progress, under review at the VLDB 2022 conference.1

8.1.1 Supervised Filtering

Similar to the budget-aware (i.e., progressive) workflow in Figure 5.2, this work turns Geospatial
Interlinking into an approximate process by adding an intermediate step between Filtering and
Verification, called Supervised Filtering, as shown in Figure 8.1. It receives as input the set of
candidates C and classifies every pair in C as “likely related” or “unlikely related”. The
pairs assigned to the latter label are discarded so that the refined set of candidate pairs C ′, which
is returned as output, consists only of the “likely related” ones. Then, Verification examines
all pairs in C ′.

In this context, we use the following notation to measure the performance of Supervised Filtering:

• TP (C) denotes the true positive candidate pairs, i.e., topologically related geometries cor-
rectly classified as “likely related”.

• FP (C) stands for the false positive candidate pairs, which consist of disjoint geometries but
are classified as “likely related”.

• TN(C) denotes the true negative candidate pairs, which involve disjoint geometries correctly
categorized as “unlikely related”.

• FN(C) designates the false negative candidate pairs, i.e., topologically related geometries
that are categorized as “unlikely related”.

In this context, the output of Supervised Filtering is defined as: C ′ = TP (C)∪FP (C). Given that
Verification is an exact process, the overall performance of the workflow in Figure 8.1 is determined
by C ′. To quantify its quality, we define the following measures:

• Recall expresses the portion of existing topological relations that are detected:
Re = |TP (C)|/(|TP (C)|+ |FN(C)|).

1https://vldb.org/2022
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Figure 8.1: The Approximate Geospatial Interlinking workflow.

• Precision expresses the portion of verified geometry pairs that are topologically related:
Pr = |TP (C)|/(|TP (C)|+ |FP (C)|).

Both measures are defined in [0, 1], with higher values indicating better performance. Note that
the higher the precision, the lower the run-time is, as fewer unrelated geometry pairs are verified,
which is a time-consuming process [CN97].

Overall, Approximate Geospatial Interlinking is formalized as:

Problem 3 (Approximate Geospatial Interlinking). Given a source and a target dataset, S and
T respectively, process their geometries such that precision is maximized for recall ≥ 0.85.

Without loss of generality, we consider 0.85 as an acceptable recall level for most applications that
process voluminous datasets. We emphasize recall over precision, because a Geospatial Interlinking
process that does not retrieve the vast majority of topological relations is of little use, regardless
of its precision.

Features for Supervised Filtering. Unlike the progressive methods in [PMMK21], which
associate every pair of geometries with a single score, Supervised Filtering addresses Problem 3 by
associating every pair with a feature vector, where every dimension is a separate numerical score.

The desiderata of the features used by our approach are:

1. They should be generic, applying seamlessly to LineStrings and Polygons and ideally, to any
indexing scheme used by the Filtering step in Figure 8.1.

2. They should be effective with high discriminatory power.

3. They should be efficient, involving a low extraction cost so that the classification of a ge-
ometry pair is much faster than its verification. As a result, they cannot rely on a detailed
examination of a geometry pair, e.g., by counting the boundary points they share.

In this context, we propose 31 features for Supervised Filtering. To facilitate their description and
understanding, we organize them into four complementary categories:

1. The area-based features consider the space occupied by the MBR of each geometry.

2. The boundary-based features stem from the characteristics of each geometry’s boundary.

3. The grid-based features emanate from the indexing scheme of Filtering.

4. The candidate-based features rely on the candidates associated with every geometry after
Filtering.

The first two categories depend exclusively on the characteristics of the geometries comprising
every candidate pair, but the remaining two rely on the Filtering step. For Filtering, we use the
space tiling of the state-of-the-art algorithm GIA.nt [PMMK21], which builds an Equigrid, where
the dimensions of each cell correspond to the average width and height of the source geometries.
Thus, it loads in main memory only the source dataset and reads the target one from the disk,
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Figure 8.2: Average recall, precision, training and prediction time of SVM, Naive Bayes, Logistic
Regression and C4.5 Decision Trees over D1-D4 in combination with area-based features (ABF),
boundary-based features (BBF), grid-based features (GBF), cardinality-based features (CBF) and
all types of features. In each case, we consider atomic and composite features as well as their
combination.

reducing the space requirements to a significant extent so as to scale to large datasets with limited
memory resources.

Every category includes two types of features: (i) the atomic, and (ii) the composite ones. The
former includes individual, core characteristics of a single geometry, while the latter encompasses
combinations of atomic features that typically normalize their values in [0, 1], with higher values
implying a stronger likelihood for topological relatedness. These two types allow for exploring the
impact of feature complexity on Supervised Filtering.

We omit the detailed definition of features for brevity.

Feature Selection. The more features describe a labelled instance, the more complex and time-
consuming is the resulting classification model. To minimize the features used by Supervised
Filtering, we perform analytical experiments about the performance of every category and type of
feature with respect to recall, precision and run-time, which is broken into training and prediction
time. In these experiments, we assume that all candidate pairs have been labelled.

We used the dataset pairs D1-D4, excluding D5, because it cannot be processed within the available
memory resources (128 GB), when running on a single CPU – the parallelization of Supervised
Filtering is work in progress. For each dataset, we formed a balanced training set that comprises
a random sample with 1% of the positive instances and an equal number of randomly selected
negative ones. The remaining candidate pairs formed the testing set. All features were rescaled
with min-max normalization. We considered four state-of-the-art classifiers [HKP11], namely SVM,
Naive Bayes, C4.5 Decision Trees and Logistic Regression. We repeated every experiment 5 times
and took the average for every evaluation measure. The resulting performance is reported in
Figure 8.2.

We observe that only only two categories of features satisfy the recall threshold in all cases: the
atomic candidate-based features and the atomic all features. Their difference in terms of precision is
insignificant. However, the candidate-based features excel in time efficiency, as both their training
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Figure 8.3: Evolution of average recall, precision, training and testing time over D1-D4 when using
the atomic candidate-based features in combination SVM, Naive Bayes, Logistic Regression and
C4.5 Decision Trees with respect to class size (on the horizontal axis).

and their prediction times are significantly lower in all cases. The reason is that they involve just 6
features, much few than the 16 atomic features. As a result, the candidate-based ones yield much
simpler and faster, yet equally effective classifiers. For this reason, we exclusively consider these
features in the following.

Class size selection. We now examine how sensitive is our feature set with respect to the size of
the training set. Even though the labelled instances are generated automatically, restricting their
number lowers the cost of Supervised Filtering for three reasons: (i) the training time gets lower,
(ii) the resulting classifier is simpler and, thus, the prediction time is lower, and (iii) the candidate
pairs that need to be labelled are fewer, thus reducing the time required for building the training
set.

To assess the impact of these two parameters, we performed a series of experiments over D1-D4,
assuming that the labels of all candidates pairs are available. For the training set size, we consider
six values: 100 and 500-2,500 instances per class with a step of 500. In every case, the training set
is balanced, due to undersampling. We use the same four classification algorithms and report the
average performance per evaluation measure in Figure 8.3.

We observe that 500 labelled instances per class suffice for satisfying the recall level across all
datasets. These instances are labelled automatically, by randomly selecting pairs of geometries to
be verified during a first pass over the input data.

Algorithm Selection. Table 8.1 reports the performance of the individual classification algo-
rithms, when combined with the atomic candidate-based features and 500 labelled instances per
class. Every algorithm was applied to every dataset 5 times and we consider the average and the
standard deviation for every evaluation measure.

Regarding effectiveness, we observe that in every dataset, SVM achieves the highest recall, which
lies consistently well above 0.9, at the cost of the lowest precision. In contrast, Naive Bayes (NB)
and Decision Trees (C4.5) emphasize precision at the cost of lower recall. Compared to SVM, their
recall drops between 12% and 35%, but their precision almost doubles. For this reason, their F-
Measure is consistently higher than that of SVM. In the middle of these two extremes lies Logistic
Regression (LR), whose recall is consistently very close or higher than 0.85, while maintaining a
very high precision, too. As a result, its F-Measure is significantly higher than SVM and close to
that of NB and C4.5, if not higher, as in D4.

Regarding time efficiency, LR and NB are the slowest algorithms in terms of training (tr) and pre-
diction (tp) time, respectively (Table 8.1 excludes the cost of feature extraction, which is common
to all algorithms). However, the overall overhead for building the classification model and applying
it to all candidate pairs remains below 1 minute in all cases, except for NB over D4, where it raises
up to 2.5 minutes. This time is negligible when compared to the verification times in Table 8.2.
For these reasons, we select Logistic Regression as the best classification algorithm for Supervised
GIA.nt.

Final performance. The overall performance of the Approximate GIA.nt, whose workflow is
presented in Figure 8.1, is reported in Table 8.2. For each dataset, we performed 5 iterations and
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Table 8.1: Performance per classification algorithm.
Recall Precision F1 tr (ms) tp (sec)

D1

SVM 0.995±0.001 0.417±0.002 0.588 10±1 3±1
NB 0.808±0.013 0.718±0.020 0.761 5±1 12±3
C4.5 0.811±0.033 0.714±0.031 0.759 17±7 1±0
LR 0.892±0.016 0.591±0.024 0.711 34±4 5±0

D2

SVM 0.951±0.008 0.015±0.000 0.030 10±1 7±3
NB 0.656±0.019 0.027±0.003 0.052 4±2 28±1
C4.5 0.765±0.045 0.038±0.004 0.072 13±2 3±0
LR 0.847±0.023 0.019±0.000 0.038 18±1 11±0

D3

SVM 1.000±0.000 0.234±0.001 0.379 10±2 8±1
NB 0.841±0.034 0.472±0.011 0.604 6±4 34±0
C4.5 0.892±0.064 0.446±0.036 0.595 10±4 2±0
LR 0.942±0.024 0.360±0.013 0.521 41±2 14±1

D4

SVM 0.940±0.056 0.188±0.007 0.313 15±4 36±2
NB 0.821±0.039 0.219±0.004 0.345 6±1 123±2
C4.5 0.620±0.083 0.229±0.006 0.335 15±7 12±2
LR 0.834±0.018 0.220±0.001 0.348 24±9 4±0

considered the average value of each measure. |C ′| stands for the number of candidate pairs that
were labelled as “likely related” by Supervised Filtering. tf corresponds to the Filtering time,
ts to the run-time (i.e., overhead) of Supervised Filtering, and tv to the verification time. Note
that during Supervised Filtering, at least 500 random candidate pairs are verified per class in order
to automatically build the training set with the atomic cardinality-based features that is used for
learning the classification model of Logistic Regression.

We observe that compared to Batch GIA.nt, which performs exact Geospatial Interlinking, Ap-
proximate GIA.nt sacrifices recall by 8% to 18%, but increases precision by more than 50% in most
cases, while the number of candidate pairs is reduced by at least 30%. As a result, the overall
run-time is reduced by 46% (D4) to 74% (D3).

Table 8.2: The relative performance of Batch and Approximate GIA.nt.
Measure D1 D2 D3 D4

Recall 1.000 1.000 1.000 1.000
Precision 0.381 0.013 0.196 0.180
tf (sec) 27 27 115 90
tv (hrs) 1.4 3.4 9.3 33.3

(a) Batch GIA.nt
Recall 0.907 ± 0.012 0.824 ± 0.039 0.951 ± 0.016 0.845 ± 0.021
Precision 0.585 ± 0.015 0.020 ± 0.001 0.376 ± 0.011 0.217 ± 0.000
|C ′| (×106) 3.72 ± 0.13 8.43 ± 0.83 9.73 ± 0.12 47.26 ± 1.24
L 1,263 ± 41 13,700 ± 74 2,551 ± 67 2,712 ± 67
tf (sec) 28 ± 3 28 ± 3 114 ± 1 91 ± 1
ts (min) 4.4 ± 0.2 6.1 ± 0.5 9.3 ± 0.3 34.4 ± 1.3
tv (hrs) 0.4 ± 0.0 1.2 ± 0.2 2.3 ± 0.2 17.4 ± 0.2

(b) Approximate GIA.nt
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