
	

	
	
	
	
	

	

	

ExtremeEarth
H2020 - 825258

Deliverable

D3.7

Software for querying and extreme analytics for
big linked geospatial data - version II

Dimitris Bilidas, Dimitrios Chalatsis, Theofilos Ioannidis,
Georgios Mandilaras, Dharmen Punjani, Manos Karvounis,

Christos Lougiakis, Eleni Tsalapati, Despina-Athanasia
Pantazi and Manolis Koubarakis

June 29, 2021

Status: FINAL
Scheduled Delivery Date: 30/06/2021

Ref. Ares(2021)4243703 - 30/06/2021

H2020-825258

Executive Summary

This deliverable describes the activities of Task 3.3 of WP3 of the ExtremeEarth project during
months M13-M30, about querying and extreme analytics for big linked geospatial data, aiming to
develop a new version of the geospatial RDF store Strabon integrated in the Hopsworks plat-
form. During the reported period, we developed the system Strabo2, that performs distributed
GeoSPARQL query processing in Hopsworks. Strabo2 stores geospatial RDF data in a Hive
database using the Vertical Partitioning RDF storage schema. Then, it performs GeoSPARQL
to Spark SQL translation using the Ontop-spatial system. During these process, it uses a series
of optimizations in order to come up with an efficient translation, that successfully scales to hun-
dreds of worker nodes, as preliminary experiments show. We have also developed an endpoint
running as a web service, that accepts GeoSPARQL queries. This endpoint communicates with
the Hops-YARN resource manager through the Apache Livy framework, currently running in the
Hopsworks installation in CREODIAS. The final and detailed experimental evaluation of Strabo2
will be reported in the Deliverable 3.5, as it depends on the evaluation framework and datasets
currently under development in Task 3.5.

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II i

H2020-825258

Document Information

Contract Number H2020 - 825258 Acronym ExtremeEarth
Full title ExtremeEarth
Project URL http://earthanalytics.eu/
EU Project Officer Riku Leppänen

Deliverable Number D3.7 Name Software for querying and extreme analytics
for big linked geospatial data - version II

Task Number T3.3 Name Querying and extreme analytics for big linked
geospatial data

Work package Number WP3
Date of delivery Contract M30 Actual 30/06/2021
Status Draft � Final 2�
Nature Prototype 2� Report �
Distribution Type Public 2� Restricted �
Responsible
Partner

UoA

QA Partner NCSR-Demokritos
Contact Person Prof. Manolis Koubarakis

Email koubarak@di.uoa.gr Phone +30 210
7275213

Fax +30 210
7275214

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II ii

http://earthanalytics.eu/

H2020-825258

Project Information

This document is part of a research project funded by the IST Programme of the Commission of
the European Communities as project number H2020-825258. The beneficiaries in this project are
the following:

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II iii

H2020-825258

Partner Acronym Contact

National and Kapodistrian
University of Athens

Department of Informatics
and Telecommunications

(Coordinator)

UoA Prof. Manolis Koubarakis
National and Kapodistrian University of

Athens
Dept. of Informatics and Telecommunications

Panepistimiopolis, Ilissia, GR-15784
Athens, Greece

Email: (koubarak@di.uoa.gr)
Tel: +30 210 7275213, Fax: +30 210 7275214

VISTA Geowissenschaftliche
Fernerkundung GmbH

VISTA

Heike Bach
Email: (bach@vista-geo.de)

The Arctic University of
Norway

Deptartment of Physics and
Technology

UiT

Torbjørn Eltoft
Email: (torbjorn.eltoft@uit.no)

University of Trento
Department of Information
Engineering and Computer

Science

UNITN

Lorenzo Bruzzone
Email: (lorenzo.bruzzone@unitn.it)

Royal Institute of Technology

KTH

Seif Haridi
Email: (haridi@kth.se)

National Center for Scientific
Research - Demokritos

NCSR-D

Vangelis Karkaletsis
Email: (vangelis@iit.demokritos.gr)

Deutsches Zentrum für
Luft-und Raumfahrt e. V.

DLR

Corneliu Octavian Dumitru
Email: (corneliu.dumitru@dlr.de)

Polar View Earth Observation
Ltd.

PolarView

David Arthurs
Email: (david.arthurs@polarview.org)

METEOROLOGISK
INSTITUTT

METNO

Nick Hughes
Email: (nick.hughes@met.no)

Logical Clocks AB

LC

Jim Dowling
Email: (jim@logicalclocks.com)

United Kingdom Research and
Innovation - British Antarctic

Survey

UKRI-BAS
Andrew Fleming

Email: (ahf@bas.ac.uk)

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II iv

H2020-825258

Contents

1 Introduction 1

2 An Overview of the Strabo2 System for Distributed GeoSPARQL Processing 2

3 Improvements in Semantic Data Storage and Loaders 8
3.1 Data Storage Design Schemes and Techniques . 8
3.2 Design Schemes - Loaders . 8

3.2.1 Scheme 1 - Loader 1 . 9
3.2.2 Scheme 2 - Loader 2 . 11
3.2.3 Loader Benchmarks . 14
3.2.4 Loader Source Code . 16

4 Improvements in Query Executor 17
4.1 Using Persistent Spatial Indexing and Partitioning 17
4.2 Caching Partitioned Thematic Tables . 18
4.3 Caching Qualitative Spatial Relations Using JedAI-Spatial 19
4.4 Query Optimization . 19

4.4.1 Handling Redundancy During Query Rewriting 20
4.4.2 Execution Order of Thematic and Spatial Joins and Filters 21

4.5 Experimental Results . 22
4.5.1 Experiments With Datasets From Food Security Use-Case 22
4.5.2 Experiments With Synthetic Dataset of Geographica2 Benchmark 23

5 Distributed Endpoint 26
5.1 Implementation of A SPARQL Endpoint in Hopsworks 26
5.2 GeoSpark Function Registration using Apache Livy 26

6 Summary and Future Work 28

A Appendix A 30

Handling redundant processing in OBDA query execution over relational sources. 30

B Appendix B 55

Queries used in the Invekos and Lucas datasets 55

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II v

H2020-825258

List of Figures

2.1 Architectural Overview of Strabo2 . 3

3.1 Overview of Loader 1 architecture . 9
3.2 Loader 1 - Property Dictionary sample . 10
3.3 Loader 1 - Vertical Partitioned Table sample . 10
3.4 Overview of Loader 2 architecture . 11
3.5 Loader 2 - Common Prefixes table contents for Synthetic dataset 12
3.6 Loader 2 - Property Dictionary Table sample . 13
3.7 Loader 2 - Spatial TripleTable sample . 13
3.8 Loader 2 - Loaders Comparison - VM . 15
3.9 Loader 2 - Loaders Comparison - PolarTEP Hopsworks 16

4.1 UCQ over the database . 21
4.2 Execution with Varying Number of Executors . 23
4.3 Execution with Varying Size of Input Dataset . 25

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II vi

H2020-825258

List of Tables

4.1 Execution Times for Invekos and Lucas Datasets 22
4.2 Execution Times for Geographica2 Synthetic Dataset 12228 24

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II vii

H2020-825258

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II viii

H2020-825258

1. Introduction

This deliverable describes the progress of Task 3.3 of WP3 of the ExtremeEarth project up to the
completion of the task in month M30 of the project. Task 3.3 develops the new highly scalable
version of Strabon1 [KKK12]. According to the task description, the result of this effort will be
the first GeoSPARQL distributed engine for big geospatial data and extreme geospatial analytics,
that will run on Hopsworks platform. The developments during the first year of the project
were reported in Deliverable D3.3. There, we presented a detailed literature review regarding
centralized systems for GeoSPARQL query processing, distributed systems that perform SPARQL
query processing on large RDF graphs and distributed systems that perform spatial analytics.
As a result, given the performance and scalability features of the systems and approaches that
we investigated, we determined the fundamental design choices and the architecture of the the
new distributed GeoSPARQL engine. Specifically, the decision to use the in-memory distributed
processing engine Apache Spark [ZCF+10] was taken. Spark is widely used for distributed data
processing and has a proven ability to scale to hundreds or thousands of worker nodes on Hadoop
installations. Furthermore, in order to incorporate spatial functionality, we decided to use the
GeoSpark [YWS15] libraries that provide rich spatial processing capabilities on top of Spark.
GeoSpark is one of the most prominent solutions for spatial analytics at scale, and recently, it has
been accepted as a project by Apache Incubator and has been renamed into Apache Sedona 2.
In Deliverable D3.3 we decided to extend the RDF data storage schema of systems that perform
scalable SPARQL processing on Spark, like S2RDF [SPSL16] and PRoST [CFL18], with geospatial
operators and data types. Finally we presented a first implementation, and based on experimental
evaluation, we identified some weaknesses and limitations of this implementation.

In this deliverable we present the system Strabo2. Strabo2 achieves the task objective, as to the
best of our knowledge, becomes the first GeoSPARQL distributed engine able to store and process
massive geospatial RDF datasets. Strabo2 addresses the weaknesses and limitations of our first
implementation, and currently, it has been experimentally evaluated with datasets of up to 450
GB size in NTRIPLES file format. Specifically, we have chosen to use the Ontology-Based Data
Access (OBDA) system Ontop-spatial, as the module responsible for GeoSPARQL to Spark SQL
enhanced with spatial functions. This choice addresses the limitations in translation of queries
performed by systems like S2RDF, as it supports rich GeoSPARQL functionality.

The rest of the deliverable is organised as follows.

We present an overview of the system in Chapter 2, where we describe the two modules of Strabo2
and the main operations regarding the storage of geospatial RDF data in Hopsworks and the
execution of GeoSPARQL queries. Then we proceed to describe improvements in the separate
components of the system (data loader and query executor) in Chapters 3 and 4 respectively.
These improvements address the shortcomings that we observed in experimental evaluation, that
had been described in Deliverable D3.3, like for example the lack of compression, the need to
access a permanent spatial index and the need for a query optimizer. Then in Chapter 5 we
present Strabo2 SPARQL endpoint that communicates with Hops-YARN through Apache Livy
and accepts requests in the form of GeoSPARQL queries. In Chapter 6 we discuss future steps,
that mainly involve further experimental evaluation using the datasets and benchmarks developed
in Task T3.5 of the project. Appendix A contains the paper [BK21] which optimizes the process
of query translation as it is carried out by Ontop-Spatial. Finally, Appendix B presents the
queries of the food security use-case that have been used in the evaluation. The final and detailed
experimental evaluation of Strabo2 will be reported in the Deliverable 3.5, as it depends on the
evaluation framework and datasets currently under development in Task 3.5.

1http://strabon.di.uoa.gr/
2https://sedona.apache.org/

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 1

H2020-825258

2. An Overview of the Strabo2 System for
Distributed GeoSPARQL Processing

In this chapter we present an overview of the Strabo2 system, starting with its architecture, which
is shown in Figure 2.1.

The system comprises of two main modules: the data loader and the query executor. Data loader
is shown in the bottom part of Figure 2.1 and is responsible for reading and importing into a HIVE
database the RDF files from the file-system. We consider that RDF files are in the popular N-
Triples file format, and that they have been saved in the distributed HopsFS file-system. Using the
N-Triples format, an RDF graph can be saved in a set of files, such that each triple is represented
in a separate line. This makes easy the distribution of N-Triples files accross the storage nodes of
HopsFS. In case the initial RDF data are saved in a format that does permit convenient distribution
across the file-system, then they should first be transformed into N-Triples. This is a simple task,
as there are many efficient libraries for transforming RDF data from other formats into N-Triples.
As the data loader reads each separate line form the input files, it saves the corresponding RDF
triple in the HIVE database, using the Vertical Partitioning (VP) storage schema. According to
VP, a separate two-column table is created in the database for each distinct predicate encountered
in the RDF data. As an example, consider the following ten RDF triples from the ice maps dataset
of the polar use case:

<http://earthanalytics.eu/polar/resource/norIceChart03_1>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://earthanalytics.eu/polar/ontology/IceObservation> .

<http://earthanalytics.eu/polar/resource/norIceChart03_1>
<http://earthanalytics.eu/polar/ontology/hasRECDATE>
"2018-03-01 00:00:00"^^<http://www.w3.org/2001/XMLSchema#dateTime> .

<http://earthanalytics.eu/polar/resource/norIceChart03_1>
<http://earthanalytics.eu/polar/ontology/hasCT>
"14"^^<http://www.w3.org/2001/XMLSchema#string> .

<http://earthanalytics.eu/polar/resource/norIceChart03_1>
<http://earthanalytics.eu/polar/ontology/hasCTClassName>
"Very Open Drift Ice"^^<http://www.w3.org/2001/XMLSchema#string> .

<http://earthanalytics.eu/polar/resource/norIceChart03_1>
<http://www.opengis.net/ont/geosparql#hasGeometry>
<http://earthanalytics.eu/polar/resource/Geometry_norIceChart03_1> .

<http://earthanalytics.eu/polar/resource/Geometry_norIceChart03_1>
<http://www.opengis.net/ont/geosparql#asWKT>
"<http://www.opengis.net/def/crs/EPSG/0/4326>

POLYGON (...)"^^<http://www.opengis.net/ont/geosparql#wktLiteral> .

<http://earthanalytics.eu/polar/resource/image3f7488e1>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://earthanalytics.eu/polar/ontology/SatelliteImage> .

<http://earthanalytics.eu/polar/resource/image3f7488e1>
<http://earthanalytics.eu/polar/ontology/hasURL>
"https://finder.creodias.eu/resto/collections/Sentinel1/3f7488e1"

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 2

H2020-825258

Figure 2.1: Architectural Overview of Strabo2

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 3

H2020-825258

^^<http://www.w3.org/2001/XMLSchema#string> .

<http://earthanalytics.eu/polar/resource/image3f7488e1>
<http://www.opengis.net/ont/geosparql#hasGeometry>
<http://earthanalytics.eu/polar/resource/Geometry_3f7488e1> .

<http://earthanalytics.eu/polar/resource/Geometry_3f7488e1>
<http://www.opengis.net/ont/geosparql#asWKT> "<http://www.opengis.net/def/crs/EPSG/0/4326>
MULTIPOLYGON (...)"^^<http://www.opengis.net/ont/geosparql#wktLiteral> .

For ease of presentation, we will use the following prefixes:

PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX polaronto: <http://earthanalytics.eu/polar/ontology/>
PREFIX polarres: <http://earthanalytics.eu/polar/resource/>

For example, instead of the full IRI <http://earthanalytics.eu/polar/resource/norIceChart03_1>
we will write polarres:norIceChart03_1. The specific triples, contain exactly seven different pred-
icates: rdf:type, polaronto:hasCT, polaronto:hasCTClassName, polaronto:hashasRECDATE, po-
laronto:hasURL, geo:hasGeometry and geo:asWKT. For each of these predicates a table will be
created in HIVE database. The name of the table will be in the form “propN", where N is an
integer number different for each table. A dictionary that saves the mappings from the full prop-
erty IRIs to these integers is also created. As an example, consider that data loader creates the
following property dictionary in our example:

rdf:type -> prop1
polaronto:hasCT -> prop2
polaronto:hasCTClassName -> prop3
polaronto:hasRECDATE -> prop4
geo:hasGeometry -> prop5
geo:asWKT -> prop6
polaronto:hasURL -> prop7

In our example, the table prop2 will have two columns (subject and object), and it will contain the
tuple: (polarres:norIceChart03_1, 14). Each of these tables will be saved in the highly efficient
PARQUET file format, that uses columnar compression, which results in decreased size, especially
for columns that exhibit a high degree of homogeneity.

The second module of Strabo2 is the query executor, and it is shown in the upper part of Fig-
ure 2.1. The query executor accepts GeoSPARQL queries from the user, and transforms them
to a series of Spark SQL queries that access the HIVE tables created by the loader. The spa-
tial operators of GeoSPARQL are translated to corresponding spatial functions offered by the
Apache Sedona library, which operates on top of the Spark engine. The translation mechanism of
the query executor depends on the Ontop-spatial system[BXK19]. Ontop-spatial is a system for
GeoSPARQL-to-SQL query translation over arbitrary relational schemas. Ontop-spatial operates
with data that exist in spatial relational database management systems, like the PostGIS spatial
extension of PostgreSQL, and provides to the user access to a virtual RDF graph constructed from

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 4

H2020-825258

the relational data, through the means of mappings defined in the W3C recommendation mapping
language R2RML 1, that construct RDF terms from the database values.

In order to use Ontop-spatial for query translation in the query executor module of Strabo2, we
had to perform several modifications and improvements in order to use Spark as a backend and
work with the RDF data stored in HIVE. First of all, as in our case the data loader stores the
data according to a specific storage schema tailored for RDF data, the VP schema, we had to
provide mappings that reconstruct the original RDF triple for each tuple in the HIVE tables.
In the normal setup of Ontop-spatial, a data engineer has to manually construct the mappings.
This task is tedious and time-consuming, especially for complex relational schemas. In our case,
as the HIVE schema is RDF specific, we can avoid this process and instead construct a trivial
mappng for each table. Specifically, Strabo2 automatically constructs this mappings on system
startup, transparently to the user, based on the contents of the property dictionary. As an example,
consider the table prop2 constructed from the data loader. The following mapping is generated
and provided as input to the Ontop-spatial translation mechanism:

{subject} polaronto:hasCT "{object}"^^<http://www.w3.org/2001/XMLSchema#string> <-
SELECT subject, object FROM prop2

The right-hand side of the mapping is a SQL query that can be executed by Spark, whereas the
left-hand side is a template that defines how triples should be generated, using the output columns
of the SQL query within curly brackets. Ontop-spatial takes as input a set of such mappings and
accesses the metadata of the database in order to gather necessary information that will guide the
query translation. Again, as Spark is not compatible with the Ontop-spatial system, we provide
the specific metadata automatically, during system start-up, using information from the property
dictionary file. This information includes the tables that reside in the database, the data types of
each column and information about primary keys. As in the case of the mappings, this information
is constructed automatically by Strabo2.

Once Ontop-spatial has been provided with the set of mappings and the metadata, it is ready to
accept GeoSPARQL queries. The initial GeoSPARQL query is initially parsed and transformed
in an intermediate form. This form is based on logic programs. After this, a rewriting process
is taking place, where the ontology axioms are taken into account, and finally the result of the
rewriting is transformed, based on the mappings, into SQL queries on the dialect of Spark-SQL.
During this procedure, the spatial operators of GeoSPARQL are transformed to spatial functions
provided by Apache Sedona. In order to demonstrate query translation, consider the following
initial GeoSPARQL query:

SELECT ?imgURL ?ctName
WHERE {
?observation rdf:type polar:IceObservation .
?observation polar:hasCTClassName ?ctName .
?observation geo:hasGeometry ?geo1 .
?geo1 geo:asWKT ?wkt1 .

?img rdf:type polar:SatelliteImage .
?img polar:hasURL ?imgURL .
?img geo:hasGeometry ?imgGeo .
?imgGeo geo:asWKT ?imgWKT .

FILTER (geof:sfIntersects(?wkt1, ?imgWKT)).
}

1https://www.w3.org/TR/r2rml/

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 5

H2020-825258

This query asks for the name of the class assigned to specific ice observations and the URL of images,
such that the geometry of each observation intersects with the geometry of the image. The query
uses the GeoSPARQL function geof:sfIntersects with arguments the corresponding geometries.
Given the property dictionary that we presented, query translation will produce the following
query that will be sent for execution to the Spark engine, where function ST_Intersects is defined
in the Apache Sedona library:

SELECT
qview6."object" AS "imgURL",
qview2."object" AS "ctName"

FROM
"prop1" qview1,
"prop3" qview2,
"prop5" qview3,
"prop6" qview4,
"prop1" qview5,
"prop7" qview6,
"prop5" qview7,
"prop6" qview8
WHERE
(qview1."object" = ’http://earthanalytics.eu/polar/ontology/IceObservation’) AND
(qview1."subject" = qview2."subject") AND
(qview1."subject" = qview3."subject") AND
(qview3."object" = qview4."subject") AND
(qview5."object" = ’http://earthanalytics.eu/polar/ontology/SatelliteImage’) AND
(qview5."subject" = qview6."subject") AND
(qview5."subject" = qview7."subject") AND
(qview7."object" = qview8."subject") AND
(ST_Intersects(qview4."object",geom2."object"))

A drawback of the vertical partitioning schema is that we need to perform a join in the final SQL
query for each triple pattern of the input SPARQL query. As RDF data do not follow a specific
relational schema, this in general cannot be avoided. There are alternative storage schemas, such
as the property tables, that try to reconstruct a tabular format from the RDF data, by storing
multiple properties that correspond to a resource in a multi-column table, as for example was the
case in the early RDF store Jena2 [WSK+03]. This approach has the drawback that we need to
preprocess the data in order to decide which property tables should be created, and also if in the
created tables for many resources some properties are not existent, tables with lot of NULL values
will be created. On the other hand, this design is also complicated when a resource has multiple
values for a specific property. For these reasons we chose to follow the vertical partitioning schema.
But in this case, we do one exception, as we take advantage of the knowledge that according to the
GeoSPARQL ontology, the propertes geo:hasGeometry and geo:asWKT are usually encountered
together. As a result, we create a single table for these two properties, the table geometries,
that has three columns: entity, geometry and wkt. Using this table, the previous query is finally
rewritten in the following form, where the number of joins is reduced by two:

SELECT
qview5."o" AS "imgURL",
qview2."o" AS "ctName"

FROM
"prop1" qview1,
"prop3" qview2,
"global_temp"."geometries2" qview3,
"prop1" qview4,

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 6

H2020-825258

"prop7" qview5,
"global_temp"."geometries2" qview6
WHERE
(qview1."o" = ’http://earthanalytics.eu/polar/ontology/IceObservation’) AND
(qview1."s" = qview2."s") AND
(qview1."s" = qview3."entity") AND
(qview4."o" = ’http://earthanalytics.eu/polar/ontology/SatelliteImage’) AND
(qview4."s" = qview5."s") AND
(qview4."s" = qview6."entity") AND
(ST_Intersects(qview3."wkt",qview6."wkt"))

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 7

H2020-825258

3. Improvements in Semantic Data Storage and
Loaders

In this chapter we present a mature, well researched and tested, set of techniques, packaged in the
form of two semantic database storage schemes, each one offering solid ground for a compatible
Query Executor variant.

Below we explain in detail both database schemes and discuss the logic behind their design alongside
with how each one of the techniques is used in either scheme. All sample data presented in this
chapter is related to the Synthetic dataset of Geographica 2 1 [IGK+21].

3.1 Data Storage Design Schemes and Techniques

The main aim of this work is to achieve superior query performance for big geospatial semantic
data on horizontally scalable computing platforms. The first step to achieving PB scaling, requires
that input data to be ingested, take the least possible storage space and at the same time use data
serialization formats that are splittable and support parallel ingestion.

Big data is a challenge in its own right, but it becomes an even bigger one in horizontally scalable
computing platforms, such as clusters. The effective allocated storage of a dataset in a standard
Hadoop cluster, is a multiple of the actual size. Replication factors are greater than x1.5, usually
x3, and they are used in order to increase parallelism opportunities through data locality. A 100TB
input dataset actually consumes between 150-300TB of the host cluster storage resources.

For semantic data, N-Triples is the serialization format which is splittable and allows fast parallel
ingestion due to its simple parsing requirements, however it uses absolute IRIs and therefore these
files have a large storage footprint. However, other serialization formats, such as Turtle, allow
through the use of a common prefix dictionary in the file header, partial encoding of IRIs which
effectively reduces the necessary storage requirements.

The second step for delivering superior query performance on big data is to design target database
schemes that are efficient, flexible and robust. Efficiency is three fold: (i) minimizing the table
storage requirements by using compression methods, (ii) using partitioning techniques to increase
data locality and (iii) allow quick retrieval for common query patterns through various indexes
and statistics bookkeeping. Flexibility means: (i) the database should be as self describing
as possible so that various clients can be informed about the database configuration and make
the most appropriate decisions for processing information, (ii) allow as many as possible target
database options to be controlled by the user upon ingestion. Robust is a system that will perform
consistently on medium, large and extreme data sizes, without having extreme dependencies on
the availability of huge amounts of RAM and executor nodes.

3.2 Design Schemes - Loaders

There are two design schemes developed. Scheme 1 corresponds to Loader 1 and it is the early
implementation developed mainly in the first 2 years of the project and its main focus is on
performance and rapid application development. Scheme 2 is produced by Loader 2, which is a
redesign of Loader 1, trying to improve on flexibility, robustness and scalability by minimizing
storage, memory and processing requirements as possible.

1http://geographica2.di.uoa.gr/

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 8

http://geographica2.di.uoa.gr/

H2020-825258

Figure 3.1: Overview of Loader 1 architecture

3.2.1 Scheme 1 - Loader 1

Scheme 1 is the layout of the Hive database and external files produced after Loader 1 loads a
dataset. The N-Triples text files that form the dataset are expected to be found in a single folder.
These are usually uploaded to the cluster or produced by some distributed application such as
GeoTriples or the DistSynthGen (distributed synthetic generator). The output of the process is a
set of tables in a Hive database and two external files. An overview of the Loader 1 architecture
in the Hopsworks cluster environment is shown in Figure 3.1.

Apart from choosing the name of the Hive database, Loader 1 has the option of selecting combina-
tions of two logical partitioning strategies, such as TripleTable and Vertical Partitioning, with the
(TT+VP) combination being the most efficient setup. In the initial step of ingestion, the parsed
triples are inserted to the TripleTable triples(s, p, o, oType) and categorized by the type
of object. The additional calculated oType integer column differentiates triples with IRI objects
(oType=2) from objects with literal values (oType=1).

After that, it calculates the set of distinct predicates from the TripleTable and maps each pred-
icate IRI to a unique name, which follows the pattern prop{X}. This dictionary encoding of the
predicates forms the Property Dictionary which is stored as an external CSV file. A sample
extension of the Property Dictionary file produced for the synthetic dataset is presented in Figure
3.2

The encoded values prop{X} are used as the names of the VP tables to be created. Each VP
table propX(s, o) corresponds to a predicate and contains the related subject-object pairs. The
subject and object remain in their original form as absolute IRIs or literal values. VP allows for

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 9

H2020-825258

Figure 3.2: Loader 1 - Property Dictionary sample

fast retrieval of triples matching the specific predicate. With the help of a Jupiter notebook a
sample extension of a VP Hive table produced for the synthetic dataset is shown in Figure 3.3

An example run of the Loader 1 on a standard Hadoop+Spark v2.x cluster is shown below:

$SPARK_HOME/bin/spark-submit --class run.Main \
--master spark://localhost:7077 \
--conf spark.sql.hive.metastore.version=2.3.3 \
--conf spark.hadoop.hive.metastore.uris=thrift://localhost:9083 \
--conf spark.sql.hive.metastore.jars=$HIVE_HOME/lib/* \
--conf spark.hadoop.datanucleus.autoCreateSchema=true \
--conf spark.hadoop.datanucleus.fixedDatastore=false \
--conf spark.hadoop.hive.exec.dynamic.partition=true \
--conf spark.hadoop.hive.exec.dynamic.partition.mode=nonstrict \
target/PRoST-Loader-2.3.1-SNAPSHOT_hdfs.jar \
-i hdfs://localhost:9000/user/tioannid/Resources/Synthetic \
-o synthetic -lp TT,VP -dp false \
-sf hdfs://localhost:9000/user/tioannid/Results/statSynth.csv \
-df hdfs://localhost:9000/user/tioannid/Results/dictSynth.csv

-i : the input directory where all N-Triple files reside
-o : the desired name of the Hive database to store the dataset
-lp : logical partitioning options (TT: Triple Table, VP: Vertical Partitioning)
-dp : remove duplicates from all logical partitioning tables
-sf : statistics file
-df : dictionary file

As mentioned earlier, Loader 1 was built with rapid application development in mind in order to
yield immediate results that allowed us to test and select the most appropriate techniques, libraries,
file formats, encoding schemes, etc. However, it does not conserve storage space and memory and
therefore does not scale in a cluster-friendly manner. A few points worth mentioning are listed
below:

• The VP table format is decided by the default Spark or Hive cluster settings. As a result the
Hive database size is not optimal and is bigger than the input dataset size.

• There is no single location for the ingested dataset and related metadata for easy consumption
by distributed clients in the cluster. The property dictionary file which contains the mapping
of predicate IRIs to VP table names and a very basic statistics file are stored as external
HDFS CSV files. Therefore tools that operate on this knowledge graph, such as the Strabo2
Query Executor 1, have to be aware of all the locations of the database and the external files
which have to be passed on as additional parameters.

Figure 3.3: Loader 1 - Vertical Partitioned Table sample

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 10

H2020-825258

Figure 3.4: Overview of Loader 2 architecture

• For geospatial clients of the dataset the knowledge of which are the spatial serialization
properties is of great importance. Loader 1 however behaves as a distributed generic RDF
loader, does not discover or indicate them in any way, and basically places this burden on
the client. As a result, tools such as the Executor 1, require that the user manually create
an appropriate file with this information and provide it through the argument list.

• The statistics file is very basic, a list of VP table names and does not offer a lot of insight
for query optimization opportunities.

• Loader 1, for simplicity reasons, is based entirely on the Spark SQL API for the bulk of the
operations it performs and does not work with the Spark RDD interfaces which can provide
finer access to optimizing the transformations performed.

3.2.2 Scheme 2 - Loader 2

Loader 2 is designed with versatility and stability for very large datasets in mind. It incorporates
all the features of Loader 1, however it aims to be cluster friendly even in very large data scales,
respecting the common storage and memory resources as much as possible.

It can import RDF graphs described with N-Triples serialization, in Text or Parquet files located
in multiple folders. The tool works very well with partitioned files (Text or Parquet) which further
speeds up ingestion. It shares similar resource-conscious design principles as the DistSynthGen
(distributed synthetic generator) which provides Text or Parquet N-Triples partitioned files with
user-defined number of partitions. The output of the loading process is a set of tables in a Hive
database. An overview of the Loader 2 architecture in the Hopsworks cluster environment is shown
in Figure 3.4.

Loader 2 parameters include:

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 11

H2020-825258

Figure 3.5: Loader 2 - Common Prefixes table contents for Synthetic dataset

• the name of the output Hive database,

• selecting logical partitioning strategies, such as TripleTable and Vertical Partitioning, with
the (TT+VP) combination being the most efficient setup,

• optional physical partitioning on the predicate of the spatial triples table,

• using HiveQL or Spark SQL dataframe API as the data definition language,

• choice of several Hive table format: Text, Parquet, Orc

• a JSON file with common IRI namespace prefixes related to the ingested dataset.

The Common Prefixes JSON file is constructed manually per imported dataset. Depending on
the source of the geospatial dataset, e.g., shapefiles, and the intermediate processing by tools such
GeoTriples, one can mine into the base ontology definitions (OSM, synthetic generators) and the
possible transformation mappings to come up with a small set of the most common prefixes. This
file is important because it guides the partial dictionary encoding of the IRIs at a later stage. At
the very least the file should contain common namespace prefixes from XML, RDF, RDFS and
GeoSPARQL vocabularies which are encountered in many datasets. The corresponding database
nsprefixes(namespace, uri) table is shown in Figure 3.5 with the help of a Jupiter notebook
and in the red rectangle we depict the prefixes subset related to the synthetic dataset ontology.

After the initial parsing to Spark RDD, Loader 2 proceeds with the inference of the geospatial WKT
serialization predicates which are consequently persisted to the aswktprops(value) Hive table.
The process involves searching for triples matching the triple pattern (?s rdfs:subPropertyOf
geo:asWKT) and using the matching subject ?s as a geospatial property. Based on this set of
discovered spatial predicates and unlike Loader 1, it separates thematic from spatial triples into
separate RDDs.

A major feature of Loader 2 is that, using the common namespace prefixes in nsprefixes, it
applies partial dictionary encoding on all IRIs of thematic and spatial RDDs. This effectively
simulates the main part of an N-Triples to Turtle conversion with the emphasis being on achieving
a substantial first-level compression of the ingested dataset.

The encoded thematic and geospatial triples are stored in different triple tables. Similar to Loader
1, the Thematic TripleTable triples(s, p, o, oType) categorizes triples by the type of ob-
ject, where the additional calculated oType integer column differentiates triples with IRI objects
(oType=2) from objects with literal values (oType=1).

During VP table generation, the following important differences from Loader 1 are introduced:

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 12

H2020-825258

Figure 3.6: Loader 2 - Property Dictionary Table sample

• VP concerns only the thematic triple predicates,

• the Loader 1 property dictionary, which was persisted as an external comma delimited
file, is now persisted in the Property Dictionary propdict(pred, tblname, records,
distsubjects, distobjects) table, as it stores the mapping of the partially encoded the-
matic predicates pred to VP table names tblname.

• the Property Dictionary plays also the role of a Statistics File, since it stores im-
portant statistics (number of records, distinct subjects and distinct objects) in the cor-
responding columns of propdict(pred, tblname, records, distsubjects, distobjects)
for each VP table, calculated during VP table generation. A sample of the Property Dictio-
nary and Statistics table in shown in Figure 3.6.

Triples identified as geospatial are persisted to a Spatial TripleTable g_triples(s, p, o, bwkt).
The additional column bwkt holds the geometry that corresponds to the WKT stored in the o
column. This one-off calculation at ingestion time is performed through the Apache Sedona2
geospatial library and is beneficial to any spatial client that is spared from repeating this calcula-
tion. It is also available an option of enabling physical Hive partitioning on the predicate p which
provides similar performance benefits to VP logical partitioning, with the added benefit of hiding
this physical detail from the SQL query language. A sample of the Spatial TripleTable for a point
only feature class is shown in Figure 3.7, where the WKT and the calculated geometry are listed.

Figure 3.7: Loader 2 - Spatial TripleTable sample

During all the previous steps and for each one of the created tables, Loader 2 forces manual
calculation of Hive table, column and partition statistics and has them persisted in the Hive
metastore. These statistics are more complete than the propdict table statistics presented earlier
and are important in many occasions. One of the key use cases of statistics is query optimization
and clients such as Executor 2 can use them as input to the optimizer cost functions in order
to choose the best execution plan. Another useful case is that some aggregate statistics may be
exactly what the users’ queries request. Users can quickly get the answers for these queries by only
retrieving stored statistics rather than firing long-running execution plans.

An example run of the Loader 2 on a standard Hadoop+Spark v2.x cluster is shown below:

$SPARK_HOME/bin/spark-submit --class run2.Main \
--master spark://localhost:7077 \
--conf spark.sql.parquet.compression.codec=snappy \
--conf spark.hadoop.hive.metastore.uris=thrift://localhost:9083 \

2http://sedona.apache.org/

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 13

http://sedona.apache.org/

H2020-825258

--conf spark.sql.hive.metastore.version=2.3.3 \
--conf spark.sql.hive.metastore.jars=$HIVE_HOME/lib/* \
--conf spark.hadoop.hive.exec.dynamic.partition=true \
--conf spark.hadoop.hive.exec.dynamic.partition.mode=nonstrict \
--files $HIVE_HOME/conf/hive-site.xml \
target/PRoST-Loader-2.3.1-SNAPSHOT_hdfs.jar \
-i hdfs://localhost:9000/user/tioannid/Resources/Synthetic/256/data \
-o ds256_hivepart -lp VP -hiveql -ttp -tblfrm parquet -df propdict \
-nsprf hdfs://localhost:9000/user/tioannid/Resources/commonprefixes.json

-i : the input directory where all N-Triple files reside
-o : the desired name of the Hive database to store the dataset
-lp : logical partitioning option (VP: Vertical Partitioning implies TT)
-df : property dictionary table name for encoding IRIs
-nsprf : fixed dictionary JSON file with common RDF namespace prefixes
-hiveql : use HiveQL instead of Spark SQL Dataframe API for DDL
-ttp : use predicate partitioning for ‘g_triples’ table
-tblfrm : set the Hive default table format (parquet, orc, text)

Improvements over Scheme 1 - Loader 1

The choice for target Hive table formats provides the user with possibility to achieve optimal
output storage size with minimal processing overhead. Combining the first level compression
achieved through partial dictionary encoding with Parquet table format and Snappy compression,
we achieve compression ratios less than 10%, a major difference from Loader 1.

The unification of all output data and metadata into the same flexible database, makes it easy for
clients to find all relevant information to complete their tasks. There are extensive Hive metastore
persisted statistics for all tables, columns and partitions alongside the Hive database included
statistics for VP tables. This way, Loader 2 provides flexibility and necessary information for
QueryExecutor like clients to make better query plans.

Critical metadata for the Query Executor such as WKT serialization properties and WKT-to-
Geometry conversions are inferred, calculated and persisted in the Hive database, off-loading the
QueryExecutor from having to do so.

Loader 2, uses both the Spark SQL API for many Hive related operations but does not miss the
opportunity of tapping into the Spark RDD interfaces especially on early stages of the ingestion
to perform the transformations in a more optimal way.

3.2.3 Loader Benchmarks

In this part we present comparative tests with Loader 1 and Loader 2 on a VM-hosted standard
Hadoop cluster and in Hopsworks PolarTEP cluster.

Standard Hadoop on a VM

The virtual machine was hosted in a HP OMEN gaming laptop and the allocated resources were
4vCores (Intel i7-7700HQ)and 21GB RAM (DDR4 2400MHz). The cluster is a standard Hadoop
v2.10.0 with Spark v2.4.5 and Hive v2.3.7. The Hive installation uses MariaDB as the metastore
database. The HDFS replication factor was 1. The cluster manager used for the jobs was Spark
Standalone and cluster utilization before each run was 0%.

The reference dataset used for import was the Geographica 2 Synthetic dataset (scaling factor
N=512) and was served in three different modes with the corresponding statistics:

• Raw : 1 N-Triple text file, size 743.9MB, 3.880.328 triples

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 14

H2020-825258

Figure 3.8: Loader 2 - Loaders Comparison - VM

• GZip : 1 Gzip file, size 32.2MB (4.3% of raw), 3.880.328 triples

• Parts GZip3 : splitted Raw to 4 files and gzipped them, size 33MB (4.3% of raw), 970.082
triples GZip file

Both Loaders used TT+VP logical partitioning, dictionary encoding enabled and Parquet was the
set as the default Spark table format. The comparison metrics are the size of the output data and
the ingestion time.

From the results in Figure 3.8 it was verified that compressing the text N-Triples files did not
work for either one of the Loaders, because GZip is not a splittable Hadoop input format and
consequently push us to the splittable compressed alternatives such as Parquet with Snappy com-
pression. The other obvious conclusion is that Loader 2 double compression, with partial dictionary
encoding and Parquet+Snappy for database table format, requires much less storage than Loader
1 does. A final note was that although Loader 1 performed better on ingesting a single text or
gzipped text file, Loader 2 outperformed Loader 1 when provided with multiple compressed text
files (splittable input format) which is the expected input format when working in distributed file
systems.

Hopsworks

The experiments for the Hopsworks platform were performed on the PolarTEP4 infrastructure,
which was setup with replication factor 1. The Hive installation uses MySql as the metastore
database. The cluster manager used for the jobs is Hadoop YARN. The job profile comprised a
static Spark allocation of a driver (1vCPU, 4GB RAM) and 10 executors (1vCPU, 4GB
RAM). Before each run the cluster utilization was below 13%. The maximum cluster
utilization during the job execution was 40%.

The Geographica 2 Synthetic dataset was used again, this time with 4 increasing scaling factors
N=512, 1024, 2048, 4096. The number of triples and the size of the input dataset quadruple
for every successive scaling factor, as shown in Figure 3.9. The datasets were generated with the
distributed synthetic generator DistSynthGen of Geographica benchmark series and each one of
the 5 feature class N-Triples files was partitioned in 10 pieces using the automatic mode (value 0).
Loader 2 run with both DDL statement options: HiveQL and Spark SQL API.

The results of the same Figure 3.9, assert most of the preliminary conclusions from the tests in the
VM+HDFS platform:

• Loader 2 output database size is approximately an order of magnitude smaller than Loader
1 database size. The same holds for HiveQL and Spark SQL API.

3Manually partitioning and compressing, simulates a splittable input format for parallel ingestion under HFDS
4https://hopsworks.polartep.io/hopsworks/

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 15

https://hopsworks.polartep.io/hopsworks/

H2020-825258

Figure 3.9: Loader 2 - Loaders Comparison - PolarTEP Hopsworks

• Loader 2 is faster in all scaling factors and seems to scale more gracefully than Loader 1, as
it requires less time for the same allocated cluster resources.

• The replication factor 1 is low and did not allow for increased parallelism opportunities.

3.2.4 Loader Source Code

Both Loaders are packaged in the same Maven Java POM project5 which is available on Github.
Each Loader has its own packages and different entry point class, which allowed for parallel devel-
opment without interference on the logic. The latest version, as of this writing, is v2.3.1.

The Loaders were required to eventually run on the Hopsworks platform, but at the same time it
was essential for development purposes, initially, to test the logic on a standard Hadoop cluster.
This was also a logical step to take since the wide acceptance of the tool would benefit from
availability on standard cluster platforms. Therefore two maven profiles were designed, each one
targeting a different platform.

The hdfs profile, which is active by default, uses well known repositories and targets Hadoop
v2.10.0, Spark v2.4.5 and Hive v2.3.7 which are the latest of the v2.x Hadoop ecosystem line.
The hops profile, taps to additional Hopsworks repositories and targets the Hops customized
Hadoop v3.2.0.2, Spark v2.4.3.2 and Hive v3.0.0.6.

For parsing we used the RDF4J6 v3.3.1 and for the geospatial related transformations v1.3.1 of
the GeoSpark-Sedona library.

5https://github.com/dbilid/PRoST
6https://rdf4j.org/

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 16

https://github.com/dbilid/PRoST
https://rdf4j.org/

H2020-825258

4. Improvements in Query Executor

In this chapter we present some methods that aim to improve query execution times over the initial
system design presented in Chapter 2. Specifically, we discuss how we have modified the system
in order to use: i) a persistent spatial index and partitioning, ii) an optional cache that contains
partitioned in-memory copies of the thematic tables of VP that originally reside in the HIVE
database and iii) an optional cache that stores qualitative spatial relations based on the original
geometries contained in the dataset. We also describe the details of the query optimizaton process
in Strabo2. Finally we present some experimental results in order to evaluate the performance of
Strabo2.

4.1 Using Persistent Spatial Indexing and Partitioning

According to the architecture that we described in Chapter 2, RDF data are stored in disk in
HIVE database according to the VP schema and during query execution, the Spark execution
engine loads the nessecary fragments in memory. Geometries have the same treatment. For
example, if we want to apply a spatial selection, we have to read the geometries from the disk,
build an in memory spatial index and/or partitioning during query execution time and discard this
index/partitioning afterwards. If the next query is again a spatial selection this process has to be
repeated. Unfortunately, this is an inherent issue of Apache Sedona when we access it from the
SQL interface, due to the fact that clustered indexes cannot be defined in Spark-SQL 1. In order
to take advantage of persistent spatial indexes and partitioning we have implemented a hybrid
translation to both the SQL and RDD/Scala interface.

To achieve this, we first create a persistent spatial structure usng the RDD/Scala interface of
Sedona, and then for each query, we modify the intermediate translation that is in the form
of a logic program rule, before the final translation into SQL, by identifying spatial FILTER
clauses that can be evaluated efficiently using the persistent structure and then by replacing the
atoms corresponding to thee specific spatial operation by temporary atoms that correspond to the
intermediate result after accessing the persistent spatial structure. As an example, a persistent
spatial index using a quad tree can be created in the distributed geometry dataset using the
following code, which holds the result as a Spark RDD (spatialRDD):

var spatialDf = _sqlContext.sql(“SELECT entity, ST_GeomFromWKT(wkt) FROM geometries”)
spatialDf.registerTempTable(tableStat.tName)
spatialRDD = Adapter.toSpatialRdd(spatialDf, "wkt")
spatialRDD.buildIndex(IndexType.QUADTREE, false)
spatialRDD.indexedRawRDD.persist(StorageLevel.MEMORY_ONLY);

Then consider a query that asks for ice observations and the class name assigned to them, such
that their geometries intersect a given polygon:

SELECT ?x ?ctName
WHERE {

?x rdf:type polaronto:IceObservation .
?x polaronto:hasCTClassName ?ctName .

1We had explicitly ask the developers of Apache Sedona (then named GeoSpark) about this issue and they
had confirmed to us that we cannot achieve this from the SQL interface. (https://groups.google.com/g/
geospark-discussion-board/c/p9y2kkQkYI4

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 17

https://groups.google.com/g/geospark-discussion-board/c/p9y2kkQkYI4
https://groups.google.com/g/geospark-discussion-board/c/p9y2kkQkYI4

H2020-825258

?x geo:hasGeometry ?geo1 .
?geo1 geo:asWKT ?wkt .

FILTER(geof:sfIntersects(?wkt, "POLYGON((23.7 37.9,22.9 40.6,11.5 48.1,23.7 37.9))"
^^<http://www.opengis.net/ont/geosparql#wktLiteral>)).

}

The intermediate translation in terms of a logic program is given below:

ans1(URI("{}",t0_6),URI("{}",t1_7)) :-
prop1(t0_6,"http://earthanalytics.eu/polar/ontology/IceObservation"),
prop3(t0_6,t1_7),
geometries(t0_6,t3_8,t4_8),
SF-INTERSECTS(t4_8,GEOMFROMWKT(POLYGON((23.7 37.9,22.9 40.6,11.5 48.1,23.7 37.9))))

By identifying the spatial filter in the logic program we can see that we can use the spatialRDD
for its evaluation. In order to do that, we are replacing the atoms geometries(t06, t38, t48) and SF−
INTERSECTS(t48, GEOMFROMWKT (POLY GON((23.737.9, 22.940.6, 11.548.1, 23.737.9))))
in this intermediate form with a new atom temp, that corresponds to the result of the access to
the spatial index. The new logic program is the following:

ans1(URI("{}",t0_6),URI("{}",t1_7)) :-
prop1(t0_6,"http://earthanalytics.eu/polar/ontology/IceObservation"),
prop3(t0_6,t1_7),
temp(t0_6)

Finally, we access the spatial index and take the result of the intersection with the given polygon,
transform the result into a dataframe and save it in the temporary table with name temp.

val rangeQueryWindow = wktReader.read("POLYGON((23.7 37.9,22.9 40.6,11.5 48.1,23.7 37.9))")
.asInstanceOf[Polygon];

val considerBoundaryIntersection = true
val usingIndex = true
var queryResult = RangeQuery.SpatialRangeQuery(spatialRDD, rangeQueryWindow,

considerBoundaryIntersection, usingIndex)
Adapter.toDf(queryResult).createGlobalTempView("temp")

4.2 Caching Partitioned Thematic Tables

In order to perform a join between two tables, Spark loads them into memory from HIVE and by
default chooses between two different join strategies: distributed sort-merge join and broadcast
join. Broadcast join is preferred when one of the two tables is very small in size (smaller than a
given threshold), so it is replicated in every node in order to be joined with the larger table. In
distributed sort-merge join the two tables are hash partitioned on the join key using the same hash
method, so records from the first table that match records of the second are placed in the same
node. After the hash partitioning, each partition of each table is sorted, and then a merge join is
performed locally in every node.

When Ontop-spatial produces a query, given a specific join order of the tables and a specific
threshold for the broadcast join, we can identify the partition and sorting operations that will take

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 18

H2020-825258

place during the evaluation from Spark. Then, without any extra cost for the total evaluation of
the query, we can first apply for each such table the partition and sorting, save the result in a
temporary table, and then perform directly the joins in the query over these temporary tables. We
then can keep the temporary tables in cache and use them for subsequent queries, if needed.

4.3 Caching Qualitative Spatial Relations Using JedAI-Spatial

JedAI-Spatial has been developed in the context of Task 3.2 of ExtremeEarth in order to perform
spatial interlinking between different datasets. In our case, we can use JedAI-Spatial with the
same dataset as both source and target dataset, in order to store the qualitative spatial relation
between the entities of the dataset. As in the normal operation, we only need to store entities that
present some spatial relation other than disjoint. After the execution of JedAI-Spatial, we create a
table based on its results. This table contains 2 columns with the names of the entities that were
found to have some spatial relation, and other nine columns with boolean values corresponding to
the spatial relations:

• Contains

• CoveredBy

• Covers

• Crosses

• Equals

• Intersects

• Overlaps

• Touches

• Within

Of course, we do not have to store information that relates every entity with itself, as we can
directly see which spatial relations hold in this case. Also, the disjoint relation can be tested by
absence of the specific pair of geometry entities from this table. The construction of this table is
an offline process, that can be optionally be employed in order to increase the efficiency of query
evaluation in Strabo2, by avoiding quantitative computations with geometries during execution in
case of spatial joins that involve an of the previously mentioned predicates, or the disjoint predcate.
Unfortunately, distance join queries cannot take advantage of this table.

4.4 Query Optimization

In this chapter we describe the query optimizer that decides the execution plan of the query
produced by Strabo2. The optimization works on two different levels. In the first level we decide
the exact form of the produced query during query rewriting with respect to the ontology axioms,
whereas in the second level we decide the exact join order for each subquery of the produced query
that contains a series of thematic and spatial joins and filters. The Optimization in the first level is
applicable to either Ontop-spatial or Ontop [RMKZ13] and is presented in detail in [BK21], which
is also included in Appendix A.

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 19

H2020-825258

4.4.1 Handling Redundancy During Query Rewriting

We now briefly describe the first level of optimization that takes place during query translation. By
default, the final form of a query after rewriting in Ontop-spatial is a union of conjunctive queries
(UCQ). This corresponds to an SQL query that is has as a top level operator a UNION with
inputs different queries that have the form SELECT-FROM-WHERE. During query rewriting,
the initial query over an ontology is rewritten in order to take into consideration the ontological
axioms. The result of this process is a query, that when posed over the ABox alone (that is, by
disregarding all the ontological axioms), will return the same answers as the initial query posed
over the ontology. This is done using the notion of certain answers, that is answers present in
every model of the ontology. During query unfolding the rewritten query is transformed into
another query expressed in the query language of the underlying data sources (in our case Spark-
SQL). During query rewriting, we use a cost-based method employed by the OBDA system during
unfolding, for choosing the final form of the SQL query to be executed by the RDBMS. This
method relies on heuristics that in turn rely only on factors known to the OBDA system, such as
sizes of the relations, duplicates introduced by the mappings for each ontology term and selectivity
estimation for simple CQs over the database, that are not affected by issues such as join ordering
or access methods, and thus can be performed even from a system operating outside the RDBMS
as long as some basic statistics about the tables have been obtained prior to the deployment of the
system. Specifically, our method starts with the “fully" unfolded query produced by the method of
[PLC+08] as the baseline, and uses the heuristics in order to “fold" back specific paths, when this
is expected to be more effective. Each such fold corresponds to the creation of an intermediate
table, as explained in the previous example. These heuristics are based on the notion of redundant
processing between the union subqueries. We make a distinction between two kinds of redundant
processing: i) duplicate answers and ii) repeated operations (disk reads and writes on the same
data) from different union subqueries of the same query even in the absence of duplicate answers.

Regarding duplicates, using the standard set semantics for queries over ontologies, the final answer
should be duplicate-free, but since RDBMSs (or Spark in our case) operate using the bag seman-
tics, duplicates are often introduced during query evaluation. Duplicates can be introduced as
different ways to obtain the same fact from the data, for example the same tuple may be produced
from different mappings used for the same property or class assertion. Using the unfolding method
from [PLC+08], this will result in duplicate answers coming from different union subqueries. But
duplicates can be introduced even from a single mapping, in case the database relation already
contains duplicate rows, or due to the projection operator in the SQL query in the body of the
mapping. In this setting, duplicates are redundant answers whose impact can be detrimental for
query evaluation, as the size of intermediate results can increase exponentially in the number of
joins in the query. Even if the final SQL query produced by an OBDA system dictates that the
result should be duplicate free using the SQL DISTINCT or UNION keyword, relational systems
rarely consider early duplicate elimination in order to limit the size of intermediate results, but
only perform the task on the final query result. This behavior is justified by the fact that duplicate
elimination is a costly blocking operation [BD83] and also that the SQL queries are usually formu-
lated by expert users who take into consideration the integrity constraints of normalized relational
schemas. Under these assumptions, considering early duplicate elimination options during opti-
mization is not usually regarded worthy. Contrary to this situation for SQL queries, it has been
ascertained [KHJR+15] that in real world OBDA settings, duplicate answers frequently dominate
query results and also that this appears as “noise” to end users that might be using a visual query
formulation tool. For this reason we use a heuristic regarding early duplicate elimination, for du-
plicates introduced from a single mapping that we also extend for the case of duplicates that show
up in different union subqueries, and use it to help us decide when to “fold" back specific branches
of the unfolded query.

Regarding the second kind of redundant processing, this depends heavily on the exact execution
plan that will be chosen by the RDBMS. As an example, consider the UCQ from Figure 4.1 and
let us suppose that there are no duplicates (each fact for each ontology predicate can be obtained
only from a single mapping). Also suppose that the RDBMS chooses to perform all the joins using

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 20

H2020-825258

ans(f(x), g(y), h(w), k(z))←
A1(x, y), A3(x, v1, w), C1(y, z)∨
A2(x, y), A3(x, v1, w), C1(y, z)∨

A3(x, y, v2), A3(x, v1, w), C1(y, z)∨
A1(x, y), A3(x, v1, w), C2(y, z)∨
A2(x, y), A3(x, v1, w), C2(y, z)∨

A3(x, y, v2), A3(x, v1, w), C2(y, z)

Figure 4.1: UCQ over the database

index-based nested loops, using for the first three subqueries the table C1 as the leftmost table
and for the next three subqueries the table C2 as the leftmost table. In this case, the redundant
processing is equal to the two scans of table C1 plus the two scans of table C2 (ignoring the possible
impact of the memory cache). If there was no redundant processing, then it is reasonable to assume
that this form of the query would be the most efficient translation, as it consists of simple CQs
which the RDBMS can efficiently optimize and probably evaluate in parallel. But since we have
redundant processing, one would expect that it would be more efficient to first compute and save
the temporary union table corresponding to the three mappings for P1, if the RDBMS will again
choose to perform index-based nested loops and the cost for creating and saving the temporary
result is smaller than the cost of the initial redundant processing. As all these possible execution
plans cannot be known to the OBDA system, for this case of redundant processing, we use a
criterion according to which temporary tables are created in a “conservative" manner, only when
it is almost certain that this decision will lead to smaller execution cost.

Our optimization method offers efficient solutions to the problem of handling redundancy in the
execution of the queries produced by Ontop-spatial. Specifically, we use a heuristic regarding early
duplicate elimination in duplicates introduced from a single mapping (that is for each union sub-
query of the final SQL query separately). This heuristic is evaluated over four different RDBMSs
and have shown that its usage is justified and that for query mixes from two different used bench-
marks, such that low selectivity queries do not dominate execution time, it can lead to overall
improvement of up to 25% compared to the strategy of always performing duplicate elimination.
Furthermore, we enhance the unfolding step previously described in the literature with cost-based
decisions regarding the redundant processing, obtaining a full cost-based method for OBDA query
translation and we extend the heuristic in order to deal with duplicate answers coming from differ-
ent union subqueries. We also take into consideration other forms of redundant processing in the
form of repeated operations. As mentioned, the detailed description is presented in Appendix A.

4.4.2 Execution Order of Thematic and Spatial Joins and Filters

Regarding the second level of optimization, this operates in the sequence of CQs that have been
obtained after the query rewriting. We consider that each of these queries contains a series of
thematic and spatial filters and joins. If the initial query contains more operators, for example
nested sub-queries, these are optimized as a separate query. The query optimizer takes as input
information about the existence of persistent spatial indexing and/or partitioning, the existence
of cache that contains partitioned thematic tables on either the subject or object column, and the
existence of qualitative spatial information that can be used to avoid computations with geometries
as presented in Chapter 4. It also uses a selectivity and a cost estimator that return information
about the size and the execution cost of a specific operator.

The query optimizer implemented in Strabo2 is based on the dynamic programming method pro-
posed in [SAC+89], where existence of partitioning and sorting in the cache is treated as a physical

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 21

H2020-825258

Query Execution Time (ms) Number Of Results
Q1 30618 0
Q2 16595 0
Q3 246825 1
Q4 57768 1
Q5 648263 8
Q6 404554 0
Q7 761601 1
Q8 132831 0
Q9 378933 2
Q10 73941 0
AVG. 275192

Table 4.1: Execution Times for Invekos and Lucas Datasets

data property, and we examine two different thematic join options for each join: broadcast join
in case the size of one of the two tables in smaller than a given threshold, and sort-merge join
otherwise. Also, thematic filters are always pushed down to be performed during the scan of the
base table. On the other hand, spatial selections can be executed later in the execution plan, in
case the original data are not spatially indexed.

4.5 Experimental Results

We now present some preliminary experimental results. These results present the execution times
in Hopsworks for the Strabo2 executor, such that we are not using any kind of caching or persistent
spatial indexing and partitioning as presented in Sections 4.1, 4.2 and 4.3. We will report the final
experimental evaluation, which includes experiments evaluating the impact of these improvements,
in deliverable D3.5 in month 36.

4.5.1 Experiments With Datasets From Food Security Use-Case

The Invekos and LUCAS datasets from the food security use-case was used for our first set of
experiments. Invekos is published by Austrian administration’s Land Parcel Identification System
and it contains crop-types for different areas, as they are declared by the land owners. LUCAS is
the 2018 Land use and cover area frame statistical survey. These datasets have been transformed
into RDF and we have used 10 SPARQL queries that were formulated with help from partners
VISTA, UNITN and NCSR-D. The exact SPARQL queries are presented in Appendix B. The
transformed datasets contains 16 million triples, and its size in NTRIPLES format is about 4.9
GB.

We have loaded the dataset in Hopsworks and succesfully executed the queries using 8 workers,
with 4GB memory per worker. The results of the execution are shown in Table 4.1. As seen,
the average execution time is about 275 seconds. This is reasonable, as most of these queries are
complex, involving nested subqueries and distance joins between multiple geometries. As most of
these queries are searching for nearest points in the two datasets, the return few results, but their
execution involves heavy spatial processing in the form of distance joins.

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 22

H2020-825258

executors

sp
ee

du
p

0

20

40

60

80

10 20 30 40 50 60

Linear Scalability Strabo 2

Speed Up - 112 GB Input

Scalability with varying number of Executors

Figure 4.2: Execution with Varying Number of Executors

4.5.2 Experiments With Synthetic Dataset of Geographica2 Benchmark

We now present experimental evaluation with the synthetic dataset of the Geographica2 bench-
mark, which contains 36 queries of spatial selections and spatial joins, with different spatial pred-
icates and selectivities. The dataset contains information about land ownerships, roads, points of
interest and states in the form of small polygons, linestrings, points and large polygons.

Results for Scaling Factor 12228 We have generated datasets of different size. The largest
dataset was generated for scaling factor 12228 which result in a size of 450 GB in NTRIPLES
files. For this specific dataset we have successfully executed the 36 queries in a cluster with 128
executors, with 4 GB of memory pes executor, with execution times and results as shown in Table
4.2.

Scalability Experiments In order to evaluate the scalability of Strabo2 we have executed
experiments with a varying number of worker nodes, and also with a varying dataset size. The
results of the first set of experiments are shown in Figure 4.2, where we have executed the 36
queries of the benchmark in an inputa dataset of about 112 GB in NTRIPLES files, with 2, 4, 8,
16, 32 and 64 executors, while the results of the second set of experiments are shown in Figure
4.3, where we are using 64 executors in order to execute the 36 queries in datasets of increasing
size, starting from 10 GB up to 450 GB. In both experiments the scalability of the system appears
very promising, but further experimentation is needed in order to further evaluate the ability of
the system to scale to larger datasets.

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 23

H2020-825258

Query Execution Time (ms) Number Of Results
Q0 102017 150994944
Q1 52628 147456
Q2 51038 113289414
Q3 46428 106440
Q4 43519 75529136
Q5 31287 69528
Q6 32639 37761025
Q7 34392 36870
Q8 27823 15114600
Q9 22656 11664
Q10 31227 153077
Q11 22636 0
Q12 503528 268441611
Q13 554069 239596
Q14 70287 262081
Q15 137656 68844
Q16 182726 108284970
Q17 54156 99776
Q18 69911 99776
Q19 13994 45568
Q20 73043 150994944
Q21 35269 147456
Q22 41802 113249647
Q23 35725 110595
Q24 50883 75500911
Q25 36964 73731
Q26 35941 37752175
Q27 23851 36867
Q28 30834 15099247
Q29 22482 14745
Q30 29165 150895
Q31 34038 147
Q32 264832 150982657
Q33 381391 141305
Q34 314095 147443
Q35 45809 135
AVG. 98353

Table 4.2: Execution Times for Geographica2 Synthetic Dataset 12228

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 24

H2020-825258

Input Size (GB)

Ex
ec

ut
io

n
Ti

m
e

(m
s)

0

200000

400000

600000

100 200 300 400

ExecutionTime Ideal speedup

Using 64 executors

Scalability with varying input size

Figure 4.3: Execution with Varying Size of Input Dataset

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 25

H2020-825258

5. Distributed Endpoint

Strabo2 executor operates as a Spark job, using the spark-submit command, with arguments that
include the HIVE database name where Strabo2 loader has saved the dataset and the directory
that contains a set of GeoSPARQL queries to be executed. Strabo2 Executor then translates
each query and sends the resulted translation Spark, using Spark-SQL, as desribed in Chapter 2.
The execution of the spark-submit command in Hospworks is monitored by Hops-YARN, which
coordinates the deployment of resources with respect to the Hopsworks cluster. In this context,
Strabo2 executor is submitted as a single jar file that contains all necessary libraries, including
Sedona. During system initialization, the geospatial functions of Sedona are registered as UDFs
in the Spark engine, so that they can be used in subsequent queries. In this chapter we discuss
the implementation of a SPARQL endpoint for Strabo2 in Hopsworks, in order to use the query
executor as a service that listens to requests for query execution.

5.1 Implementation of A SPARQL Endpoint in Hopsworks

The mode of execution of Strabo2 is prohibitive for interactive communication with Strabo2,
where the system operates as a service that first is initialized and then it is ready to accept
user queries that may come from a data visualization module like Sextant, from a federation
engine like Semagrow, or from any other compatible client that communicates with the Strabo2
service. In order to be able to allow interactive communication, we have developed an HTTP
SPARQL endpoint implementing the SPARQL Protocol1, executed as a web application. This
web application needs to execute spark jobs, but obviously cannot be executed through the spark-
submit command. Spark jobs can be executed in this setting when operating in the Spark client
mode, but in order to use the Hopsworks Spark installation and also the Hops-YARN resource
manager it is necessary to use the Spark cluster mode.

As a solution in this problem, in order to communicate with Hops-YARN and the cluster installation
of Spark from the web application that contains the Strabo2 endpoint, we use communication
through a REST interface using Apache Livy2. Strabo2 endpoint implements all communication
with Spark through Livy. Upon requesting a new session from Livy, the user can define the number
and kind of resources needed like the number of executors, the amount of memory, the number of
CPU cores, etc.

5.2 GeoSpark Function Registration using Apache Livy

In order to be able to use Sedona, the appropriate jars were placed in the installation of the
endpoint and were passed to Spark through the extra jars setting, which dictates the Spark master
to ship the mentioned jars to the worker nodes. Furthermore, it is necessary to register the spatial
user data types (UDTs) defined by Sedona. This must be done during the initialization of the
Spark application. For this reason, we implemented a class that extends the class SparkListener.
This class listens to events from the Spark scheduler, and defines code that will be executed during
the lifecycle of the application. The following code is included in the implemented listener, that
upon application startup registers the spatial UDTs:

class GeoSparkRegistratorListener extends SparkListener

1https://www.w3.org/TR/sparql11-protocol/
2https://livy.apache.org/

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 26

H2020-825258

{
override def onApplicationStart(ev: SparkListenerApplicationStart): Unit = {
UDTRegistration.register("com.vividsolutions.jts.geom.Geometry",

"org.apache.spark.sql.geosparksql.UDT.GeometryUDT")
UDTRegistration.register("com.vividsolutions.jts.index.SpatialIndex",

"org.apache.spark.sql.geosparksql.UDT.IndexUDT")
}

We have included this implementation to the extra jars setting in order to be available from the
application. After initializing a Spark session through LIVY, we also register all the spatial user de-
fined functions of Sedona using specific Spark-SQL requests. For example, for the ST_Intersection
UDF the followng command is sent to Livy:

{"code":
"spark.sessionState.functionRegistry.createOrReplaceTempFunction(\"ST_Intersection\",

org.apache.spark.sql.geosparksql.expressions.ST_Intersection);"}

Once the endpoint has been deployed, the Hopsworks user responsible for the deployment can use
the platform’s user interface to monitor and manage the submitted Spark jobs, as with normal
Spark applications. Furthermore, a docker module of the endpoint has been implemented in order
to facilitate and automate the deployment in the platform.

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 27

H2020-825258

6. Summary and Future Work

In this deliverable we presented the system Strabo2 that was developed during the Task T3.3 of
the ExtremeEarth project. Strabo2 efficiently stores compressed RDF data in a HIVE database
using the vertical partitioning schema, and uses the query translation mechanism of Ontop-spatial
in order to produce a Spark SQL query from an initial GeoSPARQL query. The produced query is
executed by Spark, extended with spatial functionality from the Sedona framework. Strabo2 also
offers the opportunity to take advantage of persistent spatial indexing and partitioning offered by
the RDD API of Sedona. Caching of partitioned thematic tables and qualitative spatial relations
is also optionally offered by the system in order to improve query execution. Strabo2 has been
succesfully deployed in the Hopsworks platform running on the CREODIAS 1 premises, and an
endpoint based on Apache Livy has been developed, in order to communicate with the Hops-YARN
resource manager, and execute on demand jobs by accepting requests for specific GeoSPARQL
queries. Strabo2 has been tested in a cluster with up to 128 worker nodes, successfully storing and
querying RDF datasets of up to 450 GB. Also, scalability experiments show that it is expected the
system to efficiently scale to larger datasets and clusters.

In the remaining time of the project (M31-M36), we will concentrate on the extensive evaluation
of Strabo2 using the latest version of the benchmark Geographica to be developed in Task 3.5
of WP3 containing both synthetic and real-world datasets. We plan to import and process even
larger datasets and more thoroughly investigate the scalability of the system. We also want to
evaluate each of the improvements that have been described in this deliverable and quantify their
impact in the overall query execution time. This work will be reported in Deliverable D3.5 (it has
been originally planned for the present deliverable but we had to delay it so that the latest version
of the benchmark Geographica would be ready).

1https://creodias.eu/

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 28

H2020-825258

Bibliography

[BD83] Dina Bitton and David J DeWitt. Duplicate record elimination in large data files.
ACM Transactions on database systems (TODS), 8(2):255–265, 1983.

[BK21] Dimitris Bilidas and Manolis Koubarakis. Handling redundant processing in obda
query execution over relational sources. Journal of Web Semantics, 68:100639, 2021.

[BXK19] Konstantina Bereta, Guohui Xiao, and Manolis Koubarakis. Ontop-spatial: Ontop of
geospatial databases. Journal of Web Semantics, 58:100514, 2019.

[CFL18] Matteo Cossu, Michael Färber, and Georg Lausen. PRoST: distributed exe-
cution of SPARQL queries using mixed partitioning strategies. arXiv preprint
arXiv:1802.05898, 2018.

[IGK+21] Theofilos Ioannidis, George Garbis, Kostis Kyzirakos, Konstantina Bereta, and Mano-
lis Koubarakis. Evaluating geospatial RDF stores using the benchmark geographica
2. Journal on Data Semantics, pages 1–40, 2021.

[KHJR+15] Evgeny Kharlamov, Dag Hovland, Ernesto Jiménez-Ruiz, Davide Lanti, Hallstein Lie,
Christoph Pinkel, Martin Rezk, Martin G Skjæveland, Evgenij Thorstensen, Guohui
Xiao, Dmitriy Zheleznyakov, and Ian Horrocks. Ontology based access to exploration
data at Statoil. In International Semantic Web Conference, pages 93–112. Springer,
2015.

[KKK12] Kostis Kyzirakos, Manos Karpathiotakis, and Manolis Koubarakis. Strabon: a se-
mantic geospatial dbms. In International Semantic Web Conference, pages 295–311.
Springer, 2012.

[PLC+08] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio
Lenzerini, and Riccardo Rosati. Linking data to ontologies. In Journal on data
semantics X, pages 133–173. Springer, 2008.

[RMKZ13] Mariano Rodriguez-Muro, Roman Kontchakov, and Michael Zakharyaschev.
Ontology-based data access: Ontop of databases. In International Semantic Web
Conference, pages 558–573. Springer, 2013.

[SAC+89] P Griffiths Selinger, Morton M Astrahan, Donald D Chamberlin, Raymond A Lorie,
and Thomas G Price. Access path selection in a relational database management
system. In Readings in Artificial Intelligence and Databases, pages 511–522. Elsevier,
1989.

[SPSL16] Alexander Schätzle, Martin Przyjaciel-Zablocki, Simon Skilevic, and Georg Lausen.
S2RDF: RDF querying with SPARQL on spark. PVLDB, 9(10):804–815, 2016.

[WSK+03] Kevin Wilkinson, Craig Sayers, Harumi A Kuno, Dave Reynolds, et al. Efficient rdf
storage and retrieval in jena2. In SWDB, volume 3, pages 131–150. Citeseer, 2003.

[YWS15] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. Geospark: A cluster computing frame-
work for processing large-scale spatial data. In Proceedings of the 23rd SIGSPATIAL
International Conference on Advances in Geographic Information Systems, page 70.
ACM, 2015.

[ZCF+10] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. Spark: Cluster computing with working sets. HotCloud, 10(10-10):95, 2010.

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 29

H2020-825258

Appendix A

This appendix contains the paper:

• Bilidas, D., & Koubarakis, M. (2021). Handling redundant processing in OBDA query exe-
cution over relational sources. Journal of Web Semantics, 68, 100639.

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 30

Handling Redundant Processing in OBDA Query Execution Over
Relational Sources

This is a pre-print of an article published in Journal of Web Semantics.
The final authenticated version is available online at:
https://doi.org/10.1016/j.websem.2021.100639

Handling Redundant Processing in OBDA Query Execution Over
Relational Sources

Dimitris Bilidasa,∗, Manolis Koubarakisa

aDepartment of Informatics and Telecommunications, National and Kapodistrian University of Athens, Panepistimiopolis,
Ilissia, Athens 15784, Greece

Abstract

Redundant processing is a key problem in the translation of initial queries posed over an ontology into
SQL queries, through mappings, as it is performed by ontology-based data access systems. Examples of
such processing are duplicate answers obtained during query evaluation, which must finally be discarded,
or common expressions evaluated multiple times from different parts of the same complex query. Many
optimizations that aim to minimize this problem have been proposed and implemented, mostly based on
semantic query optimization techniques, by exploiting ontological axioms and constraints defined in the
database schema. However, data operations that introduce redundant processing are still generated in many
practical settings, and this is a factor that impacts query execution. In this work we propose a cost-based
method for query translation, which starts from an initial result and uses information about redundant
processing in order to come up with an equivalent, more efficient translation. The method operates in a
number of steps, by relying on certain heuristics indicating that we obtain a more efficient query in each
step. Through experimental evaluation using the Ontop system for ontology-based data access, we exhibit
the benefits of our method.
Keywords: Query Translation, Data Integration, Ontology-Based Data Access, Ontop

1. Introduction and Outline

Ontology Based Data Access (OBDA) is a
database technique in which an ontology is linked to
underlying data sources through mappings. An end
user can pose queries over the ontology, which we
assume to represent a familiar vocabulary and con-
ceptualization of the user domain. The OBDA sys-
tem automatically translates the query and sends it
for execution to the underlying data sources. This
approach provides the end user with a convenient
abstraction over possibly complex schemas and de-
tails about the data storage and query processing.
The query translation involves query rewriting and
query unfolding. During query rewriting, an ini-
tial query over an ontology is rewritten in order
to take into consideration the ontological axioms.
The result of this process is a query that when

∗Corresponding author
Email addresses: d.bilidas@di.uoa.gr (Dimitris Bilidas),

koubarak@di.uoa.gr (Manolis Koubarakis)

posed over property and class assertions only (that
is, by disregarding all the ontological axioms), will
return the same answers as the initial query posed
over the ontology. This is done using the notion
of certain answers, that is, answers present in ev-
ery model of the ontology. During query unfold-
ing the rewritten query is transformed into another
query expressed in the query language of the un-
derlying data sources. In what follows we consider
an OBDA setting, where an OWL 2 QL ontology
is linked through mappings to data stored in a re-
lational database management system (RDBMS).
This method provides the user with access to a
virtual RDF graph. The original query is a con-
junctive query expressed over the vocabulary of the
virtual RDF graph, and the result of rewriting and
unfolding is a SQL query.

Example 1. As an example of OBDA setting con-
sider a relational schema that contains the rela-
tional tables A1, A2, A3,C1 and C2 and the mappings
from Figure 1. In these mappings P1,Q1,R1, P2, P3

Preprint submitted to Elsevier March 24, 2021

and Q3 are properties defined in the ontology,
whereas f , g, h and k are functions that construct
ontology objects from database values. These func-
tions are responsible for constructing an object that
acts as an ontology individual out of values occur-
ring in the database. In our setting, they con-
struct an RDF term. A query posed over the
ontology can be the following: ans(x, y,w, z) ←
P1(x, y), P2(x,w), P3(y, z).

The notion of OBDA as we describe it, was pre-
sented in [21]. There, the result of query rewriting
of an initial conjunctive query (CQ) over the ontol-
ogy is a union of conjunctive queries (UCQ) over
the vocabulary of the ontology. Then, the authors
define a faithful representation of this UCQ, along
with the mappings and database instance in terms
of a logic program. Query unfolding is based on par-
tial evaluation of such logic programs, and as final
result it produces a query which can be viewed as
an SQL query. More details about this process are
given in Section 3. Subsequent research was focused
on more efficient rewritings in the form of UCQs
over the ontology [14, 6, 20]. The main aim of
these approaches was to produce a UCQ with as few
subqueries as possible, as it was observed that the
number of union subqueries in the result of query
rewriting could be very large. A different approach
was followed in [3], where a cost-based comparison
of different reformulations is carried out, consider-
ing that no mappings are used and the ABox is di-
rectly stored in the external database. In general,
the final query in this case will be an SQL query
that contains joins over UCQs (JUCQs). An exten-
sion of this work for arbitrary relational schemas, so
that it also takes into consideration the unfolding
step with arbitrary mappings, is presented in [16].

Regarding the implementation of OBDA sys-
tems, it has been observed that in practice it is more
efficient to compile ontological knowledge regarding
class and property hierarchies into the mappings,
and ignore such axioms during query rewriting. For
this reason, Ultrawrap-OBDA[26] uses the notion of
saturated mappings and Ontop[4] uses the so called
T -Mappings [22]. For example, consider the setting
of Example 1 and an ontology that contains the fol-
lowing axioms: Q1 ⊑ P1,R1 ⊑ P1 and Q3 ⊑ P3. We
can ignore the axiom Q1 ⊑ P1 during rewriting if we
add to the original mappings the mapping m1′ from
Figure 2, and similar for the other two axioms.

In [22] three main reasons are specified for the
presence of a large number of union subqueries

in the result of query translation: i) ontological
queries with existentially quantified variables that
can lead to rewritings of exponential size, ii) large
ontological hierarchies and iii) multiple mappings
for each ontology term. Also, the authors notice
that the first reason is rarely observed in real-world
ontologies and queries. As a result, when compil-
ing ontological information about hierarchies into
the mappings, as for example in the Ontop T -
mappings, the last two important reasons that lead
to a large number of subqueries are encountered
during query unfolding. As an example, consider
the query from Example 1 posed over the previously
specified OBDA setting and T -mappings. The un-
folding method from [21] will produce a UCQ over
the database that contains six union subqueries as
shown in Figure 3. Each subquery corresponds to
a different combination of the three mappings de-
fined for P1 with the two mappings defined for P3.
One can easily see that in case of queries with many
atoms posed over large hierarchies, the final UCQ
can contain hundreds or thousands of subqueries.
On the other hand, a different unfolding method
could choose to first compute as intermediate re-
sults the queries that correspond exactly to the first
and third atoms of the initial query. In the spe-
cific example, the first temporary result would be a
union query over tables A1, A2 and A3 and the sec-
ond temporary result would be a union query over
tables C1 and C2. The final result would be a join of
UCQs. Finally, one could choose an intermediate
strategy, that would compute only one of these two
intermediate results. Clearly, a cost-based decision
should be made by the OBDA system regarding
which exactly of these intermediate results should
be computed, and if the overhead from computing
and saving these results is counterbalanced from the
gain in the final query.

Unfortunately, uncertainty about query execu-
tion costs is an inherent problem in data inte-
gration, where the mediator system (in our case
the OBDA system) operates outside the database
engine[11], as knowing all the factors that affect
query execution is difficult or even impossible. For
example, these factors include the exact execution
plan that will be chosen by the RDBMS, includ-
ing the access methods for each base relation and
the join order in a join query, hardware character-
istics like the amount of available memory and disk
throughput, the disk block size, the exact details of
the database physical design, like the existing in-
dexes and the kind of each index and several other

2

m1 : A1(vm1
1 , vm1

2)→ P1(f (vm1
1), g(vm1

2))

m2 : A2(vm2
1 , vm2

2)→ Q1(f (vm2
1), g(vm2

2))

m3 : A3(vm3
1 , vm3

2 , vm3
3)→ R1(f (vm3

1), g(vm3
2))

m4 : A3(vm4
1 , vm4

2 , vm4
3)→ P2(f (vm4

1), h(vm4
3))

m5 : C1(vm5
1 , vm5

2)→ P3(g(vm5
1), k(vm5

2))

m6 : C2(vm6
1 , vm6

2)→ Q3(g(vm6
1), k(vm6

2))

Figure 1: Example Mappings

m1 : A1(vm1
1 , vm1

2)→ P1(f (vm1
1), g(vm1

2))

m1′ : A2(vm1′
1 , vm1′

2)→ P1(f (vm1′
1), g(vm1′

2))

m1′′ : A3(vm1′′
1 , vm1′′

2 , vm1′′
3)→ P1(f (vm1′′

1), g(vm1′′
2))

m2 : A2(vm2
1 , vm2

2)→ Q1(f (vm2
1), g(vm2

2))

m3 : A3(vm3
1 , vm3

2 , vm3
3)→ R1(f (vm3

1), g(vm3
2))

m4 : A3(vm4
1 , vm4

2 , vm4
3)→ P2(f (vm4

1), h(vm4
3))

m5 : C1(vm5
1 , vm5

2)→ P3(g(vm5
1), k(vm5

2))

m5′ : C2(vm5′
1 , vm5′

2)→ P3(g(vm5′
1), k(vm5′

2))

m6 : C2(vm6
1 , vm6

2)→ Q3(g(vm6
1), k(vm6

2))

Figure 2: Example T -Mappings

factors.
On the other hand, one could expect that the

RDBMS is capable of optimizing the produced
query, since it performs query planning and op-
timization by taking into consideration the afore-
mentioned parameters. Unfortunately, database
engines focus on optimization of certain aspects
of queries, including join ordering of multi-join
queries, optimization of aggregate functions, access
methods for each relation, etc. Queries produced
by OBDA systems have some characteristics that
are not regularly encountered on human-written
queries for database applications. One such char-
acteristic is the occurrence of common subexpres-
sions in different parts of the query, for example in
different subqueries of a union query. As we saw,
the number of these subexpressions and subqueries
can be very large. Although common subexpression
identification (and in the case of multiple queries
the related multi-query optimization area) have
long been investigated in database research and
implemented in database prototypes [25, 19, 24],

to the best of our knowledge these methods have
not become integral part of commercial RDBMSs,
due to the increase in optimization time and the
complexity introduced to the query optimizer. But
since these common subexpressions are created dur-
ing query translation, the OBDA system has the
knowledge about them that can be taken into con-
sideration to produce the final SQL query. Fur-
thermore, it has been observed [16] that by using
knowledge from the mappings, we can compute dur-
ing system setup some parameters that will help us
obtain more accurate selectivity estimations. For
example, in our approach, a crucial factor that must
be used when deciding about the exact form of the
final SQL query, is the number of duplicates con-
tained in the mappings used during unfolding for
each ontology predicate. For example, for predi-
cate P1 of the query given in the previous example,
it is crucial to know the number of duplicates rows
in tables A1, A2 and the table obtained by select-
ing the first two columns of table A3. The OBDA
system knows from the mappings for which such

3

ans(f (x), g(y), h(w), k(z))←
A1(x, y), A3(x, v1,w),C1(y, z)∨
A2(x, y), A3(x, v1,w),C1(y, z)∨

A3(x, y, v2), A3(x, v1,w),C1(y, z)∨
A1(x, y), A3(x, v1,w),C2(y, z)∨
A2(x, y), A3(x, v1,w),C2(y, z)∨

A3(x, y, v2), A3(x, v1,w),C2(y, z)

Figure 3: UCQ over the database

columns and tables it should collect such informa-
tion as an one-time task prior to query execution.
On the other hand, an RDBMS cannot accurately
estimate the number of duplicates in seemingly un-
related tables and columns during query execution.

Given the previous observations, in this work
we propose a cost-based method employed by the
OBDA system during unfolding for choosing the fi-
nal form of the SQL query to be executed by the
RDBMS. This method relies on heuristics that in
turn rely only on factors known to the OBDA sys-
tem, such as sizes of the relations, duplicates in-
troduced by the mappings for each ontology term
and selectivity estimation for simple CQs over the
database, that are not affected by issues such as join
ordering or access methods, and thus can be per-
formed even from a system operating outside the
RDBMS as long as some basic statistics about the
tables have been obtained prior to the deployment
of the system. Specifically, our method starts with
the “fully” unfolded query produced by the method
of [21] as the baseline, and uses the heuristics in
order to “fold” back specific paths, when this is ex-
pected to be more effective. Each such fold corre-
sponds to the creation of an intermediate table, as
explained in the previous example. These heuristics
are based on the notion of redundant processing be-
tween the union subqueries. We make a distinction
between two kinds of redundant processing: i) du-
plicate answers and ii) repeated operations (disk ac-
cess regarding the same data) from different union
subqueries of the same query even in the absence of
duplicate answers.

Regarding duplicates, using the standard set se-
mantics for queries over ontologies, the final answer
should be duplicate-free, but since RDBMSs oper-
ate using the bag semantics, duplicates are often in-
troduced during query evaluation. Duplicates can

be introduced as different ways to obtain the same
fact from the data, for example the same tuple may
be produced from different mappings used for the
same property or class assertion. Using the unfold-
ing method from [21], this will result in duplicate
answers coming from different union subqueries.
But duplicates can be introduced even from a single
mapping due to the projection operator in the SQL
query in the body of the mapping. In this setting,
duplicates are redundant answers whose impact can
be detrimental for query evaluation, as the size of
intermediate results can increase exponentially in
the number of joins in the query. Even if the fi-
nal SQL query produced by an OBDA system dic-
tates that the result should be duplicate-free using
the SQL DISTINCT or UNION keyword, relational
systems rarely consider early duplicate elimination
in order to limit the size of intermediate results, but
only perform the task on the final query result. This
behavior is justified by the fact that duplicate elim-
ination is a costly blocking operation [2] and also
that the SQL queries are usually formulated by ex-
pert users who take into consideration the integrity
constraints of normalized relational schemas. Un-
der these assumptions, considering early duplicate
elimination options during optimization is not usu-
ally regarded worthy. Contrary to this situation
for SQL queries, it has been ascertained [13] that
in real-world OBDA settings, duplicate answers fre-
quently dominate query results and also that this
appears as “noise” to end users that might be us-
ing a visual query formulation tool. In the previous
version of this work [1], we introduced a heuristic
regarding early duplicate elimination, for duplicates
introduced from a single mapping. In this version
we extend this heuristic for the case of duplicates
that show up in different union subqueries, and use
it to help us decide when to “fold” back specific

4

branches of the unfolded query.
Regarding the second kind of redundant process-

ing, this depends heavily on the exact execution
plan that will be chosen by the RDBMS. As an
example, consider the UCQ from Figure 3 and let
us suppose that there are no duplicates (each fact
for each ontology predicate can be obtained only
once from a single mapping). Also suppose that
the RDBMS chooses to perform all the joins using
index-based nested loops, using for the first three
subqueries the table C1 as the leftmost table and
for the next three subqueries the table C2 as the
leftmost table. In this case, the redundant pro-
cessing is equal to the two scans of table C1 plus
the two scans of table C2 (ignoring the possible im-
pact of the memory cache). If there was no re-
dundant processing, then it is reasonable to assume
that this form of the query would be the most effi-
cient translation, as it consists of simple CQs which
the RDBMS can efficiently optimize and probably
evaluate in parallel. But since we have redundant
processing, one would expect that it would be more
efficient to first compute and save the temporary
union table corresponding to the three mappings
for P1, if the RDBMS will again choose to perform
index-based nested loops and the cost for creating
and saving the temporary result is smaller than the
cost of the initial redundant processing. As all these
possible execution plans cannot be known to the
OBDA system, for this case of redundant process-
ing, we use a criterion according to which tempo-
rary tables are created in a “conservative” manner,
only when it is almost certain that this decision will
lead to smaller execution cost.

In this work we present efficient solutions to the
problem of handling redundancy, considering on-
tologies belonging to the OWL 2 QL language1,
as the W3C recommendation for query answer-
ing against datasets stored in relational back-ends.
Nevertheless, several aspects of this work can be
considered for other ontology languages as well.
As mentioned, an early version of this work was
presented in [1], where a heuristic was presented
for early duplicate elimination in duplicates intro-
duced from a single mapping (that is for each union
subquery of the final SQL query separately). This
heuristic was evaluated over four different RDBMSs
and it was shown that its usage is justified and
that for query mixes from two different used bench-

1https://www.w3.org/TR/owl2-profiles/

marks, such that low selectivity queries do not dom-
inate execution time, it can lead to overall improve-
ment of up to 25% compared to the strategy of al-
ways performing duplicate elimination. The main
contributions of the present work, extending this
previous version in several aspects, are as follows:

• We enhance the unfolding step previously de-
scribed in the literature with cost-based deci-
sions regarding the redundant processing, ob-
taining a full cost-based method for OBDA
query translation (Section 3).

• We extend the heuristic in order to deal with
duplicate answers coming from different union
subqueries (Section 4).

• We take into consideration other forms of re-
dundant processing in the form of repeated op-
erations (Section 4).

• We implement our method for cost-based
translation by modifying the state of the art
OBDA system Ontop [22] and we perform ex-
tended experimental evaluation (Section 5).

The organization of this paper is as follows. We
start by providing some preliminaries regarding on-
tologies, mappings, relational databases and logic
programs (Section 2). In Section 3 we modify the
unfolding method from [21], which is based on par-
tial evaluation of logic programs, in order to ex-
plore equivalent results given that certain mappings
have been replaced by a combined mapping which
we define. In Section 4 we describe the cost-based
decisions and we present the algorithm that incor-
porates them in the unfolding process. In Section
5 we present experimental evaluation of our imple-
mentation using the Ontop OBDA framework and
the NPD and LUBM benchmarks. We also use the
Wisconsin benchmark to compare our results with
the results of [16]. In Section 6 we present relevant
work and conclusions.

2. Preliminaries

We consider the following pairwise disjoint alpha-
bets: ΣO of ontology predicates, ΣR of database rela-
tion predicates, Const of constants, Var of variables
and Λ of function symbols, where each function
symbol has an associated arity. We also consider
that Const is partitioned into DBConst of database
constants and OConst of ontology constants.

5

1:q

Root

2:m4

Node	2

2:m4

Node	3

Node	6

Node	9Node	8

Node	5

1:m1''

Node	1

2:m4

Node	4

Node	7

1:m1 1:m1'

Node	13Node	12Node	11Node	10

3:m5 3:m5' 3:m5 3:m53:m5' 3:m5'

Root : ans(x, y, z)θ0 ← ans(x, y, z)
θ0 = {}

Node1 : ans(x, y, z)θ0θ1 ← P1(x, y), P2(x, h(A)), P3(y, z)
θ1 = {}

Node2 : ans(x, y, z)θ0θ1θ2 ← A1(vm1
1 , vm1

2), P2(f (vm1
1), h(A)), P3(g(vm1

2), z)

θ2 = {x/ f (vm1
1), y/g(vm1

2)}
Node3 : ans(x, y, z)θ0θ1θ3 ← A2(vm1′

1 , vm1′
2), P2(f (vm1′

1), h(A)), P3(g(vm1′
2), z)

θ3 = {x/ f (vm1′
1), y/g(vm1′

2)}
Node4 : ans(x, y, z)θ0θ1θ4 ← A3(vm1′′

1 , vm1′′
2 , vm1′′

3), P2(f (vm1′′
1), h(A)), P3(g(vm1′′

2), z)

θ4 = {x/ f (vm1′′
1), y/g(vm1′′

2)}
Node5 : ans(x, y, z)θ0θ1θ2θ5 ← A1(vm1

1 , vm1
2), A3(vm1

1 , vm4
2 , A), P3(g(vm1

2), z)

θ5 = {vm4
1 /vm1

1 , vm4
3 /A}

Node6 : ans(x, y, z)θ0θ1θ3θ6 ← A2(vm1′
1 , vm1′

2), A3(vm1′
1 , vm4

2 , A), P3(g(vm1′
2), z)

θ6 = {vm4
1 /vm1′

1 , vm4
3 /A}

Node7 : ans(x, y, z)θ0θ1θ4θ7 ← A3(vm1′′
1 , vm1′′

2 , vm1′′
3), A3(vm1′′

1 , vm4
2 , A), P3(g(vm1′′

2), z)

θ7 = {vm4
1 /vm1′′

1 , vm4
3 /A}

Node8 : ans(x, y, z)θ0θ1θ2θ5θ8 ← A1(vm1
1 , vm1

2), A3(vm1
1 , vm4

2 , A),C1(vm1
2 , vm5

2)

θ8 = {vm5
1 /vm1

2 , z/k(vm5
2)}

Node9 : ans(x, y, z)θ0θ1θ2θ5θ9 ← A1(vm1
1 , vm1

2), A3(vm1
1 , vm4

2 , A),C2(vm1
2 , vm5′

2)

θ9 = {vm5′
1 /vm1

2 , z/k(vm5′
2)}

Node10 : ans(x, y, z)θ0θ1θ3θ6θ10 ← A2(vm1′
1 , vm1′

2), A3(vm1′
1 , vm4

2 , A),C1(vm1′
2 , vm5

2)

θ10 = {vm5
1 /vm1′

2 , z/k(vm5
2)}

Node11 : ans(x, y, z)θ0θ1θ3θ6θ11 ← A2(vm1′
1 , vm1′

2), A3(vm1′
1 , vm4

2 , A),C2(vm1′
2 , vm5′

2)

θ11 = {vm5′
1 /vm1′

2 , z/k(vm5′
2)}

Node12 : ans(x, y, z)θ0θ1θ4θ7θ12 ← A3(vm1′′
1 , vm1′′

2 , vm1′′
3), A3(vm1′′

1 , vm4
2 , A),C1(vm1′′

2 , vm5
2)

θ12 = {vm5
1 /vm1′′

2 , z/k(vm5
2)}

Node13 : ans(x, y, z)θ0θ1θ4θ7θ13 ← A3(vm1′′
1 , vm1′′

2 , vm1′′
3), A3(vm1′′

1 , vm4
2 , A),C2(vm1′′

2 , vm5′
2)

θ13 = {vm5′
1 /vm1′′

2 , z/k(vm5′
2)}

Figure 4: SLD Tree

6

As in [21], we use functions with symbols from Λ
in order to solve the so called impedance mismatch
problem of constructing ontology objects from val-
ues occurring in the database. We assume that for
λ1, λ2 ∈ Λ, where λ1 , λ2, the range of function with
symbol λ1 and the range of function with symbol
λ2 are disjoint. That is, the same ontology object
cannot be produced from different functions.

2.1. Databases.
We start by giving definitions for database in-

stances and queries over them, following the bag
semantics from [5]. A bag B is a pair (US B, µ),
where US B is a set called the underlying set of B
and µ is a function from elements of US B to the
positive integers, which gives the multiplicities of
elements of US B in B. A relation instance is a bag
of tuples of fixed arity using constants from DBConst.
A source schema S is a set of relation names from
ΣR. A database instance D for a source schema S
is a mapping from relation names in S to relation
instances.

2.2. Queries.
We define queries following the bag semantics of

[5]. In our definitions we use the term “SQL query”
although the syntax of our formulas is that of first-
order logic. Similarly, relation instances are viewed
as bags of ground atoms (i.e., with no variables) of
first-order logic.

A SQL query over a relational schema S is an
expression that has the form: S QL(x⃗) ← α, where
α is a first order expression containing predicates
from ΣR, which are among the relations that belong
to S , S QL ∈ ΣR, S QL < S and x⃗ is a vector of
constants from DBConst and variables from Var that
appear in α.

A conjunctive query Q over a relational schema
S is a SQL query, where α has the form R1(x⃗1)∧ ...∧
Rn(x⃗n), where x⃗1, ..., x⃗n are vectors of constants from
DBConst and variables from Var, and R1, ...,Rn ∈ S .
Variables from x⃗1, ..., x⃗n that do not appear in x⃗ are
existentially quantified, but we omit the quantifiers
in order to simplify the reading. CQs roughly cor-
respond to SQL Select-From-Where queries.

An assignment mapping of a conjunctive query Q
into a database instance D is an assignment of val-
ues from DBConst belonging to D to the variables of
Q such that every atom in the body of Q is mapped
to a ground atom in D. Let θ be an assignment
mapping of Q into database instance D and let X

be a variable in Q. We denote by θ(X) the constant
in DBConst to which θ maps X and we denote by
θ(Ri(x⃗i)) the ground atom to which Ri(x⃗i) is mapped.

Let µi denote the multiplicities µ(θ(Ri(x⃗i))), i =
1, ..., n. The result due to θ of a conjunctive query
Q over D is the tuple (θ(x⃗), µθ) with the multiplicity
µθ = µ1µ2 · · · µn. The result of a conjunctive query
Q over a database instance D denoted by Q(D) is
given by ⊎θrθ, where θ is any assignment mapping
of Q into D, rθ is the result due to θ and ⊎ denotes
bag union.

2.3. Ontology and Mappings.

A TBox is a finite set of ontology axioms. An
ABox is a finite set of membership assertions A(ρ)
or role assertions P(ρ, ρ′), where ρ, ρ′ ∈ OConst and
A, P ∈ ΣO denote a concept name and role (or prop-
erty) name respectively. A DL ontology O is a pair
⟨T ,A⟩ where T is a TBox and A an ABox.

A mapping assertion (or simply a mapping) m
from a source schema S to a TBox T has the form:
ϕ(x⃗) → ψ, where ϕ(x⃗) will be denoted by body(m)
and it is the right-hand side of an SQL query over a
database schema S , ψ has the form P(f 1(x⃗1), f 2(x⃗2))
or C(f 1(x⃗1)) with P (respectively C) ∈ ΣO a property
(respectively concept) name, all variables in ψ also
appear in x⃗, and each f j ∈ Λ is a function with
arity equal to the length of x⃗ j and range a subset
of OConst. The right-hand side will be denoted by
head(m). A mapping collection M is a finite set of
such mapping assertions. In this setting, having a
conjunction of atoms in the head of the mapping
assertion does not add to the expressivity of the
mapping language [21].

Let M be a mapping collection, we will use the
symbolMCQ to denote the assertions fromM whose
body is a CQ over the database schema. In cor-
respondence with CQs over a relational schema,
we define a CQ over an ontology O as an expres-
sion of the form: Query(x⃗) ← P1(x⃗1) ∧ ... ∧ Pn(x⃗n)
where x⃗1, ..., x⃗n are vectors of constants from OConst

and variables from Var, x⃗ is a vector of constants
from OConst and variables from Var that appear in
x⃗1, ..., x⃗n, and P1, ..., Pn ∈ ΣO are ontology predicates
that appear in O. A union of conjunctive queries
UCQ over an ontology O is an expression of the
form Query(x⃗) ← CQ1(x⃗) ∨ ... ∨ CQn(x⃗), where each
CQi for i = 1, ..., n is an expression of the form
Pi

1(x⃗i
1) ∧ ... ∧ Pi

n(x⃗i
n) as in the previous definition.

7

2.4. Logic Programs
Following [21], we use partial evaluation of logic

programs in order to translate a UCQ over the vo-
cabulary of the ontology into a UCQ over the data
sources. In this section we present basic notions
from logic programs[17] regarding partial evalua-
tion [18]. As we are interested in the translation
of UCQs, we do not deal with negation, and as a
result we only present notions related to definite
logic programs. As a result, in what follows we are
referring to definite programs, clauses and rules.

A logic program is a set of statements that have
the following form: ∀x⃗(A ← A1 ∧ ... ∧ An), where
A, A1, ..., An are atoms as in standard first order logic
definitions and x⃗ are all the variables occurring in
A, A1, ..., An. Each such statement is also called a
program clause, or a rule, with A being the head of
the rule, and A1∧...∧An the body of the rule. A goal
is a clause such that the head is empty. Following
the standard convention in logic programming, we
omit the existential quantifiers and use the syntac-
tic form A1, ..., An for the body, instead of A1∧...∧An,
both in clauses and goals.

A substitution θ is a finite set of the form:
{x1/t1, .., xn/tn}, where each xi is a variable, each ti
is a term distinct from xi, variables x1, ..., xn are
pairwise distinct and no variable xi occurs in some
term ti. Let Exp be an expression. The applica-
tion of a substitution θ on Exp is denoted Expθ
and is the expression obtained by Exp after replac-
ing each occurrence of xi with ti for i = 1, ..., n.
Let Exp1 and Exp2 be expressions. A unifier
for Exp1 and Exp2 is a substitution θ such that
Exp1θ = Exp2θ. Let θ1 = {x1/s1, ..., xm/sm} and
θ2 = {y1/t1, ..., yn/tn} be substitutions such that no
variable from x1, ..., xm occurs in θ2. The compo-
sition of θ1 with θ2 is the following substitution:
{x1/s1θ2, ..., xm/smθ2, y1/t1, ..., yn/tn}. The most gen-
eral unifier (mgu) of two expressions Exp1 and
Exp2, is a unifier ξ such that for every unifier ν
of Exp1 and Exp2 there exists a substitution θ such
that ν is the composition of ξ with θ.

A computation rule is a function from a set of
goals to a set of atoms, such that the value of the
function for a goal is always an atom, called the
selected atom, in that goal.

Let G be ← A1, ..., Am, ..., Ak, C be A ← B1, ..., Bq

and R be a computation rule. Then, the goal G′ is
derived from G and C using the mgu θ via R if the
following conditions hold:

• Am is the selected atom in G given by R,

• θ is an mgu of Am and A,

• G′ is the goal ←
(A1, ..., Am−1, B1, ..., Bq, Am+1, ..., Ak)θ.

A resultant is a first order formula of the form
Q1 ← Q2, where each of Q1,Q2 is either absent or a
conjunction of atoms. Any variables in Q1 or Q2 are
assumed to be universally quantified at the front of
the resultant.

Let P be a program, G′ be a goal with body G
and R a computation rule. Then, the SLD-tree of
P ∪ {G′} via R is the tree defined as follows:

• Each node is a resultant (possibly with an
empty body)

• The root node is G0{} ← G0, where G0 = G.

• Let Gθ0...θi ← A1, ..., Am, ..., Ak be a node in
the tree with k ≥ 1 and suppose that Am is
the selected atom of the derivation given by
R. Then, this node has a descendant for each
input clause of A ← B1, ..., Bq of P such that
Am and A are unifiable. The descendant is
Gθ0...θi+1 ← (A1, ..., B1, ..., Bq, ..., Ak)θi+1, where
θi+1 is an mgu of A and Am.

• Nodes which are resultants with empty bodies
have no descendants.

Each branch of the SLD-tree is a derivation of
G′. A branch which ends in a node such that the
selected atom does not unify with the head of any
program clause is called a failure branch. A branch
which ends in the empty clause is called a suc-
cess branch. An SLD-tree is complete if all of its
branches are either failure or success branches. An
SLD-tree that is not complete is called partial.

In general an SLD-tree can contain branches that
correspond to infinite derivations, but we will not
deal with this case, as the logic programs that we
will construct do not contain recursion.

The computed answer θ for a node Qθ0, ..., θi ← Qi

of an SLD-tree is the restriction of Qθ0, ..., θi to the
variables in the goal G′.

Let P be a program, A an atom and R a compu-
tation rule and T an SLD-tree for P ∪ {← A} via R.
Then:

• any set of nodes such that each non-failing
branch of T contains exactly one of them is
a Partial Evaluation (PE) of A in P;

8

• the logic program obtained from P by replacing
the set of clauses in P whose head contains A
with a PE of A in P is a PE of P with respect
to A.

The semantics of a logic program P can be de-
fined by two different ways, proved to be equiv-
alent. The first one is the declarative, that uses
the model-theoretic semantics of first-order logic,
where the semantics are given by the least Herbrand
model, which contains the facts that are true in ev-
ery model of P. The second way is the procedural,
where the SLD-tree is used, and the semantics are
given by the success set of P, that is all the facts
A such that the SLD-tree of P ∪ {← A} has a suc-
cess branch. Also, it is known that the semantics
of a program P coincide with the semantics of any
partial evaluation of P[17].

3. Unfolding Queries Through Partial Evaluation

In this section we describe the process of unfold-
ing queries over the ontology, into queries over the
external relational database using mappings. We
are following the approach of [21], with the follow-
ing modifications:

• We enforce that during each step of the SLD-
Derive process, the algorithm employs the com-
putation rule that chooses for unification the
leftmost possible atom in the right-hand side
of the resultant.

• We make a distinction between mapping as-
sertions whose body is a CQ over the database
and the rest of the mapping assertions.

• We define a step that “folds” back specific
branches of the PE tree based on the notion
of combined mapping, and we show that the
SQL query that is obtained based on this form
of the PE tree has exactly the same answers
with the SQL query obtained using the initial
form of the tree.

The logic program for a UCQ Q(x⃗) ← CQ1(x⃗) ∨
... ∨ CQn(x⃗) over: (i) an ontology O (ii) a database
instance D over a database schema S and (iii) a
mapping collectionM from source schema S to the
vocabulary of O is defined in [21]. As it is shown
that the result of the unfolding process is indepen-
dent of the database instance D, here we omit the
second component and we directly define the logic

program with respect to O and M. Also, we mod-
ify the process by using auxiliary predicates only
for mapping assertions in M\MCQ.

The program for Q and M, denoted P(Q,M) is
the logic program defined as follows:

• P(Q,M) contains the clause Q(x⃗)← CQi(x⃗) for
each CQi in the right-hand side of Q.

• P(Q,M) contains each mapping assertion m ∈
MCQ.

• For each mapping assertion m ∈ M \
MCQ, P(Q,M) contains the clause head(m) ←
Auxm(x⃗), where Auxm is an auxiliary predicate
associated to m, whose arity is the same as
head(m).

We now present the function SLD-Derive de-
fined in [21], with the extra condition that
we enforce use of the computation rule that
chooses for unification the leftmost possible atom.
The SLD-Derive(P(Q,M)) takes as input P(Q,M),
where Q has the form q(x) ← β, and returns a
set Res of resultants constituting a PE of q(x⃗) in
P(Q,M), by constructing an SLD-tree for P(Q,M)∪
{← q(x⃗)} as follows:
• it starts by selecting the atom q(x⃗),

• it continues by selecting the atoms whose pred-
icates belong to the alphabet of T , as long as
possible, using the computation rule R which
selects each time the leftmost such atom

• it stops the construction of a branch when no
atom with predicate in the alphabet of T can
be selected.

The partial evaluation PE(Q,M) of P(Q,M) with
respect to q(x⃗) is obtained by dropping the clauses
for q in P(Q,M) and replacing them with the result
of SLD-Derive(P(Q,M)).

Example 2. Consider the query ans(x, y, z) ←
P1(x, y), P2(x, h(A)), P3(y, z), with h ∈ Λ and A ∈
DBConst the mapping collection (T -mappings)
shown in Figure 2 and a database instance
over a schema that contains the relation names
A1, A2, A3,C1 and C2 with tuples of appropriate ar-
ities according to Figure 2. The SLD-tree for
P(Q,M) ∪ {← ans(x, y, z)} is shown in Figure 4.

In [21] the virtual ABox given by a mapping col-
lectionM over a database instance D for a database

9

schema S is defined as the set of ABox assertions
generated by applying each mapping assertion in
M over D and it is shown that for each tuple of
constants t⃗, P(Q,M) ∪ {← q(⃗t)} is unsatisfiable if
and only if t⃗ belongs to the result of executing Q
over the database instance that stores exactly the
assertions contained in the virtual ABox. Here we
omit the formal definitions and the proof, but we
note that it is straightforward to see that the spe-
cific result carries over to our modified definition of
P(Q,M). Also, the algorithm UnfoldDB is defined,
which, given an UCQ Q over an ontology O with a
mapping collection M, translates the set of resul-
tants returned by SLD-Derive(P(Q,M)) into queries
over the database instance D. Again, we omit the
details and we note that in our case the resulted
query will be a UCQ over S that has the form

Query(x⃗)← Q1(x⃗) ∨ ... ∨ Qn(x⃗) (1)

where each Qi for i = 1, ..., n is the translation given
by UnfoldDB that corresponds to a resultant re-
turned by SLD-Derive(P(Q,M)), and it is an ex-
pression of the form

Qi(f⃗i(x⃗i))←
Auxi1 (x⃗i1) ∧ ... ∧ Auxil (x⃗il) ∧ Ril+1 (⃗xil+1) ∧ ... ∧ Rim (x⃗im)

(2)

where each f j
i ∈ f⃗i is a function whose function

name belongs in Λ and whose variable arguments
are among the variables of x⃗i1 , ..., x⃗im , each Auxi j

for j = 1, ..., l corresponds to body(m) for some
m ∈ M \ MCQ and each Rik for k = l + 1, ...,m is
a relation name from the database schema. Note
that on the original definition of UnfoldDB seman-
tic query optimization (SQO) with respect to the
database schema S is not performed. Nevertheless,
in subsequent research, the role of SQO with respect
to this context was proved crucial [27, 23]. In this
work we consider that SQO, like self-join elimina-
tion, is performed in the result of UnfoldDB, that
is in each Qi for i = 1, ..., n in (1). Furthermore,
by overloading the definition of UnfoldDB, we con-
sider a version of the function that takes as input
an SLD-tree resulted from the application of the
SLD-Derive(P(Q,M)), and operates as described to
produce a query that has the aforementioned form.

We now proceed with some definitions that will
be used when we “fold back” the SLD-tree produced
by SLD-Derive. For each edge e of the SLD-tree we

define source(e) to be the node at the beginning of e,
target(e) to be the node at the end of e, T M(e) to be
the predicate symbol of the atom selected by com-
putation rule R at source(e), M(e) to be the clause
(mapping assertion) used in the specific derivation,
sub(e) to be the substitution used in the specific
derivation and pos(e) to be the set of integers cor-
responding to the positions of atoms affected by the
derivation in the right-hand side of the resultant in
target(e).

Let m1, ...,mn be mapping assertions of the form
ϕi → ψi where no variable is repeated in ψi, for
i = 1, ..., n. Also let θ be a unifier such that the
atoms ψ1θ, ..., ψnθ are all equal (obviously the pred-
icate symbol at the head of each assertion is the
same). Then, the combined mapping of m1, ...,mn is
the following expression:
ϕ1θ ∨ ... ∨ ϕnθ → ψ1θ
If a variable z is repeated in some ψi, we modify ψi

by keeping only the first occurrence and we replace
all other occurrences with fresh variables z1, ..., zk ∈
Var. Then, we add the conditions z = z1, ..., z = zn

as conjuncts in the body of ψi.
Essentially, the combined mapping introduces a

mapping assertion whose body is the union the in-
put mappings, with the appropriate renaming. Two
examples of combined mappings for the example
mappings shown in Figure 2 are presented in Fig-
ures 5 and 6.

Proposition 1. Let T be an SLD-tree resulted
from SLD-Derive with input P(Q,M), mc be the
combined mapping of mappings m1, ...,mn ∈ M
and Mc = (M \ {m1, ...,mn}) ∪ {mc}. The seman-
tics of PE(Q,M) coincide with the semantics of
PE(Q,Mc).

Proof. We need to show that for every tuple t⃗ of
constants, q(⃗t) is true in PE(Q,M) if and only if q(⃗t)
is true in PE(Q,Mc), which follows directly from the
construction of mc.

Let T be the tree resulted from
SLD-Derive(P(Q,M)) and e0 an edge in
T . Also, let e1, ..., en be edges in T with
source(e0) = source(e1) = ... = source(en) and
T M(e0) = T M(e1) = ... = T M(en) such that there ex-
ists a combined mapping mc : ϕ0θ ∨ ... ∨ ϕnθ → ψ1θ,
with θ = sub(e0) and T M(e0) be equal to the
predicate at the head of mc. A fold of T into e0 is
the tree T1 that is resulted from T by replacing
in each descendant node of target(e0) (including
target(e0)) the atoms at positions pos(e0) with the

10

cm1 : A1(vm1
1 , vm1

2) ∨ A2(vm1
1 , vm1

2) ∨ A3(vm1
1 , vm1

2 , vm1′′
3)→ P1(f (vm1

1), g(vm1
2))

θ = {vm1′
1 /vm1

1 , vm1′′
1 /vm1

1 , vm1′
2 /vm1

2 , vm1′′
2 /vm1

2 }

Figure 5: Combined Mapping for Mapping Assertions m1, m1′ and m1′′

cm2 : C1(vm5
1 , vm5

2) ∨C2(vm5
1 , vm5

2)→ P3(g(vm5
1), k(vm5

2))

θ = {vm5′
1 /vm5

1 , vm5′
2 /vm5

2 }

Figure 6: Combined Mapping for Mapping Assertions m5 and m5′

atom ψ1θ, and deleting all the sub-trees starting
from target(e1), ..., target(en). Moreover, let f1, ..., fm
be all the edges in T (including e0) such that
M(f1) = ... = M(fm) = M(e0). Then, the fold of
T based on mc is the tree that is obtained if we
sequentially apply the process of obtaining the fold
of T into fi for i = 1, ...,m ensuring that for each
fk, fl with k, l in 1, ...m, if the depth of target(fk) in
T is smaller than the depth of target(fl), then the
fold of T into fk is obtained after obtaining the fold
of T into fl.

Figure 7 shows the fold of the SLD-tree of exam-
ple 2 based on the combined mapping from Figure
6, where Auxcm2 is an auxiliary predicate used for
mappings inM\MCQ according to the construction
of P(Q,M), that correspond to combined mapping
cm2. Note that the same combined mapping is rec-
ognized and used in three different nodes of the
initial tree.

Proposition 2. Let T be an SLD-tree resulted from
SLD-Derive with input P(Q,M), mc be the com-
bined mapping of mappings m1, ...,mn ∈ M and
Mc = (M \ {m1, ...,mn}) ∪ {mc}. The fold of T based
on mc is exactly the tree returned by SLD-Derive
with input P(Q,Mc).

Proof. Let T f old be the fold of T based on mc and
Tc be the SLD-tree resulted from SLD-Derive with
input P(Q,Mc). We need to show that T f old and
Tc consist of the same resultants. Clearly the two
trees have the same root. Then, given a resultant
ans(x⃗)θ0...θk ← A1(x⃗1), ..., Ai(x⃗i), ..., Aw(x⃗w) at depth k
which is the same for the two trees, it is sufficient
to show that the children of this resultant are the
also the same for the two trees. Let nodeTc and
nodeT f old be the nodes in Tc and T f old respectively
that contain the specific resultant. Suppose that

Ai is the leftmost atom in the body of the resul-
tant with predicate that belongs to the alphabet of
T and will be chosen by the computation rule R.
Also, for now, let us suppose that there is only one
node nodeT in the initial tree T such that for ev-
ery edge e in T with T M(e) equal to the predicate
symbol at the head of mc, then source(e) = nodeT .
According to the construction of the fold of T into
e0, if nodeT is different from nodeT f old , then the chil-
dren of nodeT f old are the same with the children
of nodeTc , as they are not affected by the com-
bined mapping. If nodeT is equal to nodeT f old , then
nodeT has n children affected by the combined map-
ping, plus a number of children not affected (pos-
sibly 0). The second kind of children are also chil-
dren of nodeTc , whereas the first kind have been
replaced in T f old with the child ans(x⃗)θ0...θkθk+1 ←
A1(x⃗1), ..., Auxcm(⃗z), ..., Aw(x⃗w), which is also a child
of nodeTc , and these are the only children of both
nodeTc and nodeT f old . Now, if there are more nodes
in T affected by the fold of T based on mc, then
from the construction of the fold, where descendant
nodes are always modified prior to their predeces-
sors, and from the fact that R chooses always the
leftmost possible atom, it is straightforward to see
that the result of the case where only one node is
affected by the combined mapping is carried over
to this case.

A direct consequence of Propositions 1 and 2 is
that if we consider the SLD-tree tree T resulted
from SLD-Derive with input P(Q,M) and we ap-
ply the UnfoldDB algorithm on the resultants con-
tained in the the fold of T based on the combined
mapping mc, then the SQL query that will be pro-
duced has exactly the same answers with the SQL

11

query produced by applying the UnfoldDB algo-
rithm on the resultants of the original tree T . This
gives us the ability to choose a sequence of folds, in
order to obtain an equivalent translation that can
be more efficient, by using a cost-based search in
the initial SLD-tree, which we describe in detail in
the Section 4.2.

An issue that arises in these translations has to
do with the way the combined mapping is treated.
One way is to be treated as a regular mapping as-
sertion, as the body of this mapping is simply a
union query over the original mapping assertions.
This union query will be computed as many times
as the combined mapping is used in the produced
query. Obviously a better choice would be to cre-
ate a temporary table that holds the specific result
as an intermediate result of the main query, in the
same database connection. This is the solution that
we follow in this work, as it also avoids the over-
heads of creating permanent materialized views in
the database as in [26]. A second issue that has
to be handled is the decision regarding which folds
should be used, if any, for a specific query. As we
will describe in the following section, the process of
taking the specific decision heavily depends on the
size of the SQL query, the size of each combined
mapping in comparison to the size of the final SQL
query and the number of duplicate answers con-
tained in them.

4. Cost-Based Selection of Query Translation

In this section we consider a cost-based algo-
rithm in order to choose a specific sequence of
folds and obtain the SQL translation of the initial
query. During this process we take into consider-
ation the two kinds of redundant processing that
we described in Section 1. Regarding the first kind
(redundancy due to duplicates), we will employ a
heuristic about early duplicate elimination of in-
termediate results during query evaluation that we
first described in [1]. In order to describe the heuris-
tic, we first consider a single subquery that has the
form shown in formula (2) of Section 3. After that,
in Section 4.2 we describe our algorithm operating
on the complete query that has the form shown in
formula (1). Our method relies on an estimation
of the final result size of each union subquery. To
obtain this estimation we should gather some statis-
tics from the database in the form of data summa-
rization for all the columns that can be possibly
referenced from a query, that is all the columns in

the SQL queries of some mapping assertion. As
making an estimation for an arbitrary FOL query
is an involved process, we make a distinction be-
tween assertions in MCQ (Ri+l+1, ...,Ri+m in formula
2) and assertions inM\MCQ (Auxi1 , ..., Auxin in for-
mula 2). We consider that the latter are primitive
tables as if they were virtual views, and we collect
statistics only for the output columns, whereas the
former are parsed and we collect statistics for all
the referenced columns. We will refer to each con-
junct in the right-hand side of (2) as an input table
of query Qi(f⃗i(x⃗i)).

Let q be a query as in (2) and Ii(x⃗i) be an input ta-
ble of q. The query ans(x⃗ci)← Ii(x⃗i), where x⃗ci con-
tains exactly the variables of x⃗i that appear at least
two times in q, will be called the projection query
of input table Ii(x⃗i) from q. Additionally, let D be
a database instance (which will be implied). Intu-
itively the projection query selects all the columns
of an input table that are mentioned elsewhere in
q. In Section 4.1, we decide if we will save each pro-
jection query as an intermediate result with respect
to duplicates.

Analyzing External Tables. As we operate outside
the RDBMS engine, in order to extract the needed
information we should import all the corresponding
data, which is clearly not practical. Luckily we have
several other options. One such option is to only
import a random sample and extract the needed
information from that, as most database vendors
support ordering the results by a random function.
Another option is to obtain the data summariza-
tion directly from the RDBMS, if it provides a way
to access this information. This option is likely to
give the most accurate results, but it is highly de-
pendant on the specificities of each database ven-
dor. One third option is to build a simple single-
bucket histogram for each column, by sending for
execution queries that ask for the number of values,
number of distinct values, minimum and maximum
value. Simple histograms like this are known to
give imprecise selectivity estimations for filter and
join results of attributes that exhibit skewness [10],
but on the other hand their construction and usage
is faster in comparison to more elaborate kinds of
histograms. For our experiments we have chosen
the last option, as it is fast and simple and can be
applied to any underlying RDBMS. This is a one-
time offline process that needs to be done before
query execution, similar to an analyze command in
a database schema, as it only depends on the re-

12

1:q

Root

2:m4

Node	2

2:m4

Node	3

Node	6

Node	8

Node	5

1:m1''

Node	1

2:m4

Node	4

Node	7

1:m1 1:m1'

Node	10Node	9

3:cm2 3:cm2 3:cm2

Root : ans(x, y, z)θ0 ← ans(x, y, z)
θ0 = {}

Node1 : ans(x, y, z)θ0θ1 ← P1(x, y), P2(x, h(A)), P3(y, z)
θ1 = {}

Node2 : ans(x, y, z)θ0θ1θ2 ← A1(vm1
1 , vm1

2), P2(f (vm1
1), h(A)), P3(g(vm1

2), z)

θ2 = {x/ f (vm1
1), y/g(vm1

2)}
Node3 : ans(x, y, z)θ0θ1θ3 ← A2(vm1′

1 , vm1′
2), P2(f (vm1′

1), h(A)), P3(g(vm1′
2), z)

θ3 = {x/ f (vm1′
1), y/g(vm1′

2)}
Node4 : ans(x, y, z)θ0θ1θ4 ← A3(vm1′′

1 , vm1′′
2 , vm1′′

3), P2(f (vm1′′
1), h(A)), P3(g(vm1′′

2), z)

θ4 = {x/ f (vm1′′
1), y/g(vm1′′

2)}
Node5 : ans(x, y, z)θ0θ1θ2θ5 ← A1(vm1

1 , vm1
2), A3(vm1

1 , vm4
2 , A), P3(g(vm1

2), z)

θ5 = {vm4
1 /vm1

1 , vm4
3 /A}

Node6 : ans(x, y, z)θ0θ1θ3θ6 ← A2(vm1′
1 , vm1′

2), A3(vm1′
1 , vm4

2 , A), P3(g(vm1′
2), z)

θ6 = {vm4
1 /vm1′

1 , vm4
3 /A}

Node7 : ans(x, y, z)θ0θ1θ4θ7 ← A3(vm1′′
1 , vm1′′

2 , vm1′′
3), A3(vm1′′

1 , vm4
2 , A), P3(g(vm1′′

2), z)

θ7 = {vm4
1 /vm1′′

1 , vm4
3 /A}

Node8 : ans(x, y, z)θ0θ1θ2θ5θ8 ← A1(vm1
1 , vm1

2), A3(vm1
1 , vm4

2 , A), Auxcm2 (vm1
2 , vm5

2)

θ8 = {vm5
1 /vm1

2 , z/k(vm5
2)}

Node9 : ans(x, y, z)θ0θ1θ3θ6θ10 ← A2(vm1′
1 , vm1′

2), A3(vm1′
1 , vm4

2 , A), Auxcm2 (vm1′
2 , vm5

2)

θ10 = {vm5
1 /vm1′

2 , z/k(vm5
2)}

Node10 : ans(x, y, z)θ0θ1θ4θ7θ12 ← A3(vm1′′
1 , vm1′′

2 , vm1′′
3), A3(vm1′′

1 , vm4
2 , A), Auxcm2 (vm1′′

2 , vm5
2)

θ12 = {vm5
1 /vm1′′

2 , z/k(vm5
2)}

Figure 7: SLD Tree 2

13

lations occurring in mappings and data. Also, as
it is crucial to have an accurate estimation of the
number of duplicate answers that come from dif-
ferent mappings for the same predicate, we execute
queries counting exactly the distinct number of an-
swers for queries in bodies of mappings that can
possibly formulate a combined mapping assertion.
These mapping assertions can simply be identified
offline as the subsets of mappings whose heads can
be unified during the partial evaluation. Regarding
duplicates coming from a single mapping, adopting
the commonly used value independence assumption
between the result attributes and the uniformity of
values in an attribute [28], we estimate the distinct
tuples of the relation to be the product of the dis-
tinct values of its attributes. In case this value is
larger than the number of tuples in the relation,
we assume that there are no duplicate tuples in the
relation.

4.1. Early Duplicate Elimination of Intermediate
Results

First, we define the duplicate-tuple ratio DTRR

of a relation instance R to be equal to
∑

t∈US R µ(t)
|US R | .

A relation instance with DTR equal to 1 will be
called a duplicate-free relation instance. Now, let us
suppose that we have a single SQL subquery com-
ing from the unfolding step and we have to take
the decision regarding a single input table (either
“real” primitive table or virtual view) used in this
subquery; we will take into consideration different
union subqueries in Section 4.2. In this case, it may
be advantageous to dictate the RDBMS to perform
the duplicate elimination on projection query of the
specific input table at the beginning of query execu-
tion, store the duplicate-free intermediate result in
a temporary table and use it for the specific query.
This can be done in several ways depending on the
exact SQL dialect and capabilities of the underlying
system. For example, one can use (non-recursive)
common table expressions or temporary table def-
initions. Of course, the exact decisions as to when
this should happen depend on several factors, in-
cluding the exact query, the DTR of the projec-
tion query of the input table, the number of uses
of the specific input table in the query, the choice
to save the temporary table in disk or keep it in
memory and several other factors that depend on
the database physical design, database tuning pa-
rameters, the exact query execution plan and the
evaluation methods chosen by the optimizer of the

RDBMS. As mentioned, it is difficult for all these
factors to be estimated outside the database engine.
For this reason, in what follows, we propose to take
this decision according to a heuristic that depends
only on the size of the data and the DTR of the in-
put table, whose estimation can be obtained using
data summarization.

The main assumption that we make regarding
duplicate elimination, states that the impact of an
input table with DTR equal to a constant number
n in the number of tuples of the final query result
is proportional to n. As a result of this assump-
tion, the selectivity of the query plays the most
important role in duplicate elimination decisions.
Intuitively, a query whose result size is much larger
than the size of the intermediate result for which we
examine the duplicate elimination option, it is ex-
pected to be faster to first perform the elimination,
as each tuple of the intermediate result has as im-
pact the creation of a large number of tuples in the
final result. On the other hand, a query with few
results is expected to be evaluated faster if dupli-
cates are eliminated directly from the final result.
In this case one would expect that each tuple of
the intermediate result does not add that much to
the total cost of the query in order to counterbal-
ance the cost of a duplicate elimination, especially
when expecting the optimizer to limit the sizes of
intermediate query results as soon as possible.

A Heuristic Regarding Duplicate Elimination.
Given a database instance D, a query q of the form
(2) whose result over D is the relation instance Q
and an input table Ii(x⃗i) of q, perform duplicate
elimination on input table Ii(x⃗i) prior to execution
of q if

S izeQ −
S izeQ

DTRAns
>

S izeAns

DTRAns

where relation instance Ans is the result of the pro-
jection query of Ii(x⃗i) from q on D and S izeQ and
S izeAns are the estimated sizes (in bytes) of rela-
tion instances Q and Ans respectively. That is,
duplicate elimination should be performed if it is
expected that the reduction on the size of the final
result will be bigger than the size of the intermedi-
ate result with duplicate elimination.

4.2. Cost-based Translation
In this section we present the algorithm

GetTranslation (Algorithm 1), which, given a UCQ
Q over an ontology O and a mapping collection M

14

from O to a database instance D over a database
schema S , it returns a SQL query over D and
provides a set CMtemporary of temporary views to
be created. Each of these temporary views corre-
sponds to a SQL query on the body of a combined
mapping that exists in the SDL-tree produced by
SLD-Derive(P(Q,M)). In other words, the algo-
rithm chooses a sequence of folds based on one of
these combined mappings each time, that are per-
formed repeatedly in a corresponding sequence of
trees, starting from the initial SLD-tree. The Tcurrent

variable holds the current tree at each point of ex-
ecution. In each step, the fold that is expected to
provide the largest gain is chosen, and this process
is continued until no fold that provides gain exists.
In this sense, the algorithm proceeds in a greedy
way, in order to avoid examining all the combina-
tions. The gain for each possible combined map-
ping is estimated based in the redundant processing
that we avoid by materializing and using the spe-
cific mapping with respect to i) duplicate answers
and ii) repeated operations even in the absence of
duplicate answers.

Regarding duplicate answers, in correspondence
with the observations made in Section 4.1, here the
main factors that determine the behavior of the al-
gorithm are the query selectivity and the size of the
result of the SQL query in the body of each com-
bined mapping. The difference here is that we con-
sider the final query that is the result of UnfoldDB,
instead of a single union subquery, and a combined
mapping that contains many input mappings which
can produce duplicate results between them, in-
stead of a single input table of one subquery. Let
cm be the combined mapping ϕ1∨ ...∨ϕn → ψ in this
context, for simplicity we will denote by S izecm and
DTRcm the size and DTR of the relation instance
that is the result of executing the query ϕ1 ∨ ...∨ ϕn

over the database instance D, given that duplicate
elimination is not performed. Computing and sav-
ing the combined mapping is expected to be more
efficient, if the reduction on the size of the final
SQL query will be bigger than the size of the tem-
porary table resulting from the materialization of
the combined mapping with duplicate elimination
(S izecm/DTRcm). Using the quantity S izeS QLcm to
denote the size of the result of the final SQL query
when the combined mapping cm has been chosen
for materialization with the duplicates eliminated,
which is equal to S izeS QLcurrent/DTRcm, we have that
the result of UnfoldDB with input the fold of T into
cm (S QLcm) is preferred over the result of UnfoldDB

with input T (S QLcurrent) if:

S izeS QLcurrent − S izeS QLcm >
S izecm

DTRcm
(3)

Regarding repeated operations even in the ab-
sence of duplicate answers, as discussed in Section
1, in order to obtain an exact cost model we should
be aware of the exact execution plan and the choice
of access methods for each relation in order to esti-
mate the amount of data read and written to disk
for each CQ. As this is not viable for the OBDA
system that operates outside the database engine,
we base our estimation on the sizes of the input
relations and the size of the result. Specifically,
we consider that the smaller table in each CQ is
fully scanned once, and all other tables are either
probed using an index as many times as the num-
ber of final query results or are fully scanned once,
depending on which of the two options has the low-
est cost. In order to find the smaller table, table
sizes in this context are compared by taking into
consideration the filters that appear in each table
in the CQ, that is tables are compared according
to the size of each corresponding projection query.
Also, as we do not want to take into consideration
duplicates introduced from the combined mapping
under consideration, for each input table that par-
ticipates in the combined mapping, we take its size
after we divide it by DTRcm.

Let SQL be an SQL query of the form 1 that is
the result of UnfoldDB, we will denote by RRS QL

the estimation for the size in bytes of redundant
reads in the absence of duplicates as described. In
other words, RRS QL holds the sum of redundant
reads for every disjunct (CQ) in the right-hand side
of (1). Then, the result of UnfoldDB with input
the fold of T into cm (S QLcm) is preferred over
the result of UnfoldDB with input T (S QLcurrent)
if the estimated reduction in redundant reads from
S QLcurrent to S QLcm is larger than the size of the
temporary table resulting from the materialization
of the combined mapping with duplicate elimina-
tion (S izecm/DTRcm):

RRS QLcurrent − RRS QLcm >
S izecm

DTRcm
(4)

If we want to take both kinds of redundant pro-
cessing into consideration concurrently, we simply
have to add the left-hand side parts of (3) and (4):

15

S izeS QLcurrent − S izeS QLcm + RRS QLcurrent − RRS QLcm

>
S izecm

DTRcm
(5)

In Algorithm 1 we are considering the heuristic as
a quantity giving the expected gain, with negative
values meaning that we have loss instead of gain,
as shown in Line 11 of the algorithm, since we want
to compare the different options and choose the one
that gives the biggest gain at each step. So the final
formula used is:

S izeS QLcurrent − S izeS QLcm+

RRS QLcurrent − RRS QLcm −
S izecm

DTRcm
(6)

Regarding some implementation issues, we
should note that we do not need to make selec-
tivity estimation for all the results each time, but
only for those that are affected by the combined
mapping, that is, the disjuncts in the result of Un-
foldDB that correspond to resultants in the SLD-
tree which are descendants of nodes which use some
of the input mappings of the combined mapping
examined each time. As a matter of fact, we can
modify the gain formula so that only these disjuncts
are taken into consideration in the computation of
RRS QLcurrent ,RRS QLcm , S QLcurrent and S QLcm.

5. Implementation and Experimental Evaluation

We have implemented our translation in an pro-
totype extension of Ontop version 1.18.1. This ver-
sion of Ontop normally uses the default unfolding
method of [21] over the T -Mappings in order to
emulate H-complete ABoxes [22], as we mentioned
in Section 1, and employs the tree-witness query
rewriting [14] on such ABoxes. We follow the same
architecture, using the tree-witness approach for
query rewriting and we modify the unfolding step
over the T -Mappings as described here.

Newer versions of Ontop use a different query un-
folding method that employs the notion of interme-
diate query (IQ) [30]. We discuss the relevance of
our method to this in Section 6. For this reason, we
compare our method with both the default transla-
tion based in partial evaluation of logic progrmams
obtained by version 1.18.1, but also with the new

Algorithm 1: Translation Process
1 GetTranslation (M,Q,D);
Input : Mapping Collection M, Query Q,

Database D
Output: SQL query over D

2 CMtemporary = ∅;
// The combined mappings that should be

used as temporary tables
3 Tcurrent = SLD-Derive(P(Q,M)); // The

SLD-tree at each step. Initially equal to
the result of SLD-Derive(P(Q,M))

4 S QLcurrent = UnfoldDB(Tcurrent);
5 Add to CMused all the combined mappings

that exist in Tcurrent;
6 MaxGain = 0;
7 do
8 foreach cm ∈ CMused do
9 Tcm: the fold of Tcurrent based on cm;

10 S QLcm = UnfoldDB(Tcm);
11 Compute Gain from S QLcurrent to

S QLcm according to Formula 6 ;
12 if Gain > MaxGain then
13 MaxGain = Gain;
14 Tbest = Tcm;
15 S QLbest = S QLcm;
16 BestCm = cm;
17 end
18 end
19 if MaxGain > 0 then
20 S QLcurrent = S QLbest;
21 Tcurrent = Tbest;
22 Remove BestCm from CMused;
23 Add BestCm to CMtemporary;
24 end
25 while MaxGain > 0;
26 return S QLcurrent;

16

translation method obtained from the latest Ontop
versions 3.0.1 and 4.0.2. In general, version 3.0.1
outperforms version 4.0.2, so we only report times
for version 3.0.1 here, but all the execution times
for version 4.0.2 are also available along with all
other material2.

Our aim in this section is to perform an ex-
perimental comparison of our approach with other
methods using well-known benchmarks. For this
reason, we present experiments using the NPD and
LUBM benchmarks in Section 5.1, comparing our
approach with the translation performed by the two
aforementioned Ontop versions. Then, in Section
5.2, we compare our approach with the JUCQ ap-
proach using the datasets and queries from [16] and,
in Section 5.3, we study the performance of our
method in comparison to the default translation,
for different query characteristics. Finally, in or-
der to obtain an empirical analysis of our heuristic
regarding duplicate elimination, in Section 5.4 we
perform an experimental evaluation using a micro
benchmark with specific query fragments coming
from queries used in the general evaluation.

5.1. Experiments with NPD and LUBM Bench-
marks

We have performed an experimental evaluation
of our techniques using the LUBM [9] and NPD
[15] benchmarks, with the ontology and mappings
that are publicly available at the Ontop repository
on github3 and with existential reasoning enabled.
Both datasets were generated for scale 100.

The experiments in this section were carried out
on a machine with an Intel Core i7-3770K processor
with 8 cores and 32 GB of RAM running UBUNTU
18.04, using PostgreSQL version 11.3 as a backend.
PostgreSQL was setup and tuned for usage in a ma-
chine with 32GB RAM. The schema and data in all
systems were identical and all the proposed indexes
were created. The database size was about 1.1 GB
for LUBM and about 5.8 GB for NPD.

Queries and Mappings. For LUBM benchmark in
total 84 mapping assertions were produced as T -
Mappings from Ontop. For LUBM we used the
original 14 queries. For NPD we used a subset
of 19 out of the original 30 queries: queries 1-12,

2http://cgi.di.uoa.gr/~dbilid/experiments-obda/
3https://github.com/ontop/iswc2014-benchmark/

tree/master/LUBM and https://github.com/ontop/
npd-benchmark

22-25 and 28-30, excluding the queries that use
GROUP BY, as it is not supported by the used On-
top version, queries that contain OPTIONAL and
queries with empty translation due to incompati-
ble IRIs. To these queries we added four more, in
order to showcase the advantage of duplicate elim-
ination coming from a single mapping. The rea-
son for this addition is that despite the fact that
many mappings introduce duplicates, the existing
queries are only using a small subset of the map-
pings that mostly avoid this problem. We believe
that the four added queries are sensible and simple,
yet their evaluation proved very hard. This show-
cases that the problem we are dealing with is also
present in the NPD benchmark. These new queries
are numbered 31 to 34 and presented in Appendix
A. All SPARQL queries were executed using the
DISTINCT modifier.

Overhead in Setup and Optimization. The time
needed to gather all the necessary statistics and
analyze tables prior to the first deployment of the
system as described in Section 4 was 48 seconds for
LUBM and 3 minutes and 10 seconds for NPD. To-
tal optimization time for the 14 LUBM queries total
time increased from 325 ms to 360 ms, whereas for
the 23 NPD queries the increase was from 1115 ms
to 1380 ms. The given times include the total time
from parsing each SPARQL query to outputting
the corresponding SQL query. The first time is the
time needed by the original Ontop version 1.18.1,
whereas the second time is the time needed by our
modified version.

Results. For each query we used a timeout of 1000
seconds. For each setting, all queries were executed
sequentially according to their numbering, after a
full system reboot. The given times measure the
total time needed for each query including the op-
timization time in Ontop, the execution time in the
relational back-end and the time to obtain the re-
sults in Ontop. All the results were obtained, but
they were not saved or processed otherwise. The
combined mappings chosen by our method were
materialized as temporary tables during execution
in the same session as the main query and unique
indexes were created on those tables. All times are
in milliseconds. All results and the produced SQL
queries, as well as all the necessary material to re-
produce the experiments are available in the link
given in the beginning of this section.

17

Query v1 Default v1 Opt. v3 #Results

NPD 1 4899 5258 13696 1627744
NPD 2 4189 4142 5015 172751
NPD 3 1155 1119 1535 83737
NPD 4 20542 20899 27159 1627744
NPD 5 54 66 128 193
NPD 6 33234 23533 36128 1231564
NPD 7 1438 1377 1489 180
NPD 8 307 303 ERROR1 5974
NPD 9 2354 2222 1537 12750
NPD 10 4243 3649 3800 79512
NPD 11 86773 7650 8523 418056
NPD 12 122712 14376 16824 838430
NPD 22 6373 3247 8003 1113200
NPD 23 6565 3304 44340 763400
NPD 24 2437 498 ERROR1 147400
NPD 25 10055 9324 12106 1725400
NPD 28 32343 22815 167362 2141968
NPD 29 90271 17212 26400 419834
NPD 30 163276 26661 58143 705984
NPD 31 TIMEOUT 29771 54641 2979400
NPD 32 1085 318 746 8000
NPD 33 77139 19545 24509 148037
NPD 34 5443 3329 18678 486000

Avg. 307682 9592 252742

1 Error during unfolding
2 Excluding timeouts and errors

Table 1: Results for NPD scale 100 (Times in ms)

Query v1 Default v1 Opt. v3 #Results

LUBM 01 543 587 685 4
LUBM 02 1283 1272 1377 264
LUBM 03 129 87 101 6
LUBM 04 149 125 438 34
LUBM 05 69 98 71 719
LUBM 06 17086 8868 29419 1048532
LUBM 07 259 306 334 67
LUBM 08 393 301 1079 7790
LUBM 09 47126 33518 16539 27247
LUBM 10 16 16 13 4
LUBM 11 191 187 192 224
LUBM 12 132 134 245 15
LUBM 13 112 111 138 472
LUBM 14 3096 2826 4406 795970

Avg. 5042 3460 3931

Table 2: Results for LUBM scale 100 (Times in ms)

Results are presented in Table 1 for NPD queries
and in Table 2 for LUBM queries. Results in col-
umn v1 Default contains the execution times ob-
tained by the Ontop version 1.18.1, column v1 Opt.
contains the times obtained by the modified Ontop
version according to our approach and column v3
contains the times obtained by Ontop version 3, the
latest stable Ontop release. The average execution
times for each case are also shown in the bottom of
each table, excluding errors and timeouts. For the
case of NPD queries, there was 1 timeout from v1
Default for query 31, and two errors during unfold-
ing from Ontop v3. The exact error message for
each error can be found at our result repository.
According to the results, our approach outperforms
on average both Ontop version 1.18.1 and version
3. For the NPD benchmark the decrease in average
execution time obtained by our method is 69% and
62% in comparison to version 1.18.1 and version 3
respectively, while for the LUBM benchmark the
decrease is 31% and 12% respectively. Also, with
very few exceptions, our method outperforms the
other two approaches on every single query.

5.2. Comparison with the JUCQ Approach
In this section we compare our method with the

approach from [16]. As this implementation is
not part of the Ontop release, we directly use the
queries produced by this approach, which are avail-
able at the Ontop examples github repository 4.
For this reason, in all the experiments presented in
this section we only report the time for executing
the SQL queries in PostgreSQL, omitting the time
for query unfolding. For measuring the execution
times of the JUCQ approach, we used the scripts
provided in the aforementioned github repository.
As in the previous section, we also include the times
obtained using the versions 1.18.1 and 3 of Ontop.
The execution environment is the same as in the
previous section.

We use the exact benchmark and queries that
were also used in [16]. Specifically, we use the
OBDA version of the Wisconsin benchmark [7],
with the same ontology and mappings, for which
we have created 24 instances of the base relational
table, each one with 1 million tuples. This is the
exact setting used in [16]. The results of the Wis-
consin benchmark are presented in Table 3, where

4https://github.com/ontop/ontop-examples/tree/
master/iswc-2017-cost/

18

there are two different query sets, one that con-
tains queries consisting of 3 atoms, and the other
with queries consisting of 4 atoms. Each query
set contains 84 queries, and the average execution
time for each approach is shown. Our approach
outperforms all other translations, followed by the
JUCQ approach, whereas the worst performance is
obtained from the default translation of version 1,
which is the only approach such that timeouts oc-
cur. One other observation has to do with the ex-
ecution times for the UCQ (default translation of
Ontop 1.18.1) and JUCQ translations reported in
[16]. Specifically, our execution times for these two
sets of approaches seem to be much better. For ex-
ample, in their reported times, timeouts of 20 min-
utes occurred in every setting, and the average exe-
cution time for the JUCQ approach was 160 seconds
for the 3 atoms query set, whereas in our experi-
ments the corresponding time is only 30.5 seconds.
These differences can possibly be attributed to dif-
ferent versions of the PostgreSQL database (they
used version 9.6) and different tuning parameters of
the database engine. Other than that, our findings
are consistent with theirs. Specifically, we observed
the largest improvement of JUCQ with respect to
the default UCQ translation for queries with more
mappings and redundancy. The behavior of our
approach is similar, exhibiting large improvement
for these queries in comparison to all other three
approaches.

Finally, we use the same modified NPD queries
NPD 6*, NPD 11*, NPD 12* and NPD 31* as
in [16], executed over the scale 100 of the NPD
benchmark. This is different from [16], where these
queries were executed only over the original NPD
dataset (scale 1). The results are presented in Ta-
ble 4. Again our approach outperforms all other
approaches. Also, regarding the JUCQ translation,
the results here show a different situation in com-
parison to the Wisconsin benchmark, as it exhibits
the worst performance and also a timeout occurs
for query NPD 31*. The queries produced by the
JUCQ approach seem in general more complicated
from the ones produced from the other three ap-
proaches.

5.3. Performance gain
In this section, we study the performance gain of

our optimized method over the default translation
which is obtained by partial evaluation of logic pro-
grams and leads to generation of UCQs. Following
the setup of [16], we use the Wisconsin benchmark,

Query Set v1 Default v1 Opt. v3 JUCQ

3 atoms 73133 22589 53624 30528
4 atoms 2236841 30922 64048 43926

1 Excluding 24 timeouts

Table 3: Average execution time (ms) for Wisconsin Bench-
mark (24 tables with 1 million tuples per table)

Figure 8: Performance gain for varying number of mappings
per predicate

generating 24 tables with 1 million tuples per ta-
ble, executing 84 queries with 3 atoms each, with
a varying number of mappings used for each query
(from 1 to 6) and we compute the performance gain
using the formula 1−(Opt. Time/Default Time). In
Figure 8 we present results for each number of map-
pings per predicate. The figure presents the average
gain for all the queries per case (1 to 6 mappings).
As expected, when there is only 1 mapping per
predicate, our method does not generate any tem-
porary table, and as a result, it performs roughly
the same as the default translation. Starting from
two predicates, our methods begins to outperform
the default translation, reaching an average gain of
more than 0.7.

In Figure 9, we present a scatter chart with the
performance gain with respect to the number of
results for the 84 queries of the benchmark. As
shown, the queries are partitioned in visually dis-
tinct groups with respect to the number of their
results. The effect of query selectivity is evident in
this chart, with our method becoming increasingly
efficient compared to the default, as the number of
results grows larger, achieving a gain of 0.75 for the
queries with about 1.7 million results. On the con-
trary, for the first group of queries, with low num-
ber of results, we cannot see a consistent behavior
in comparison with the default.

19

Query v1 Default v1 Opt. v3 JUCQ [16] #Results

NPD 6* 91083 21700 132787 295445 2150854
NPD 11* 169833 9189 20070 204426 734214
NPD 12* 74001 5415 11471 14699 734214
NPD 31* 224925 18201 3980 ERROR1 1718
AVG 139960 13626 42077 1715232

1 Error during execution after 221 seconds
2 Excluding Errors

Table 4: Results for NPD queries from [16] (scale 100-Times in ms)

Figure 9: Performance gain with respect to number of results

5.4. Evaluating the Duplicate Elimination Heuris-
tic

In this section we present experimental justifica-
tion for the use of our heuristic regarding duplicate
elimination. For this purpose, we have chosen four
query fragments from the LUBM benchmark and
four from NPD, such that duplicate elimination is
applicable on them, as it was found during the pre-
viously described experiments. The experiments of
this section were carried out on a machine with an
Intel Core i7-3770K processor with 8 cores and 16
GB of RAM running UBUNTU 16.04. As our inten-
tion was to examine how our optimizations perform
in different underlying systems, we used four differ-
ent back-ends: PostgreSQL (version 9.3), MySQL
(version 5.7) and two of the most widely used pro-
prietary RDBMSs, which due to their license we
will call System I and System X. All systems were
setup and tuned for usage in a machine with 16GB
RAM.

Each query fragment consists of a single select-
from-where subquery. The fragments were chosen
such that they have varying characteristics regard-
ing the execution time, the number of results and
the DTR of the mapping assertion under consider-

ation. In order to test these queries with different
selectivities, we applied to them extra filters. As
LUBM100 contains information about exactly 100
universities, we used a filter on the university ID at-
tribute in direct correspondence to the percentage
of selectivity, whereas for NPD we used different
filters for each fragment. We used filters that re-
sult in selectivity percentage of 1, 5, 10, 30 and 60,
resulting in a total of 40 queries per system. We
executed each of these 40 queries with and with-
out duplicate elimination performed, resulting in a
total of 240 runs for all systems. The results were
obtained with warm caches.

In the upper part of Table 5 (one-time) we
present the total execution times for these queries
per system, depending on the duplicate elimination
strategy. The titles of the first three columns are
self-explanatory. The fifth column gives the total
time, if always the best strategy was chosen for each
system. The fourth column gives the best time, if
for each query and each selectivity, the best com-
mon strategy was chosen for all systems. This way,
the difference between the fourth and fifth column
can give an indication of how similar the behaviors
of the systems are, whereas comparison of third and
fourth columns can give a measure of how well our
heuristic takes advantage of this common behavior.

One can observe that the strategy of always per-
forming duplicate elimination is much better than
never performing, and that even the strategy of al-
ways choosing the best approach is not extremely
better. The reason for this result is that for queries
with low selectivity, the execution time is much
larger and dominates the total time. For these
queries, performing duplicate elimination is prefer-
able and sometimes gives up to two orders of mag-
nitude better results. In order to simulate a query
mix such that low selectivity queries do not dom-
inate execution time, we also computed results
where we give very selective queries a weight, such

20

that queries with 1% selectivity have been executed
60 times, queries with 5% selectivity have been exe-
cuted 12 times, etc. We present the total execution
time under this setting in the lower part of Table
5. As before, exact times and queries are available
at the same location 5.

6. Related Work and Conclusions

Regarding related work, the research of Lanti et
al. [16] constitutes the most relevant to ours, as it
also deals with cost-based translation. The authors
extend the cover-based translation of Bursztyn et
al. [3], in order to take into consideration the map-
pings to arbitrary relational schemas. The authors
analyze the database as a preprocessing step, in or-
der to extract useful statistics, such as the cardinal-
ity of join results between queries in bodies of map-
ping assertions whose heads can be joined. Using
these statistics, the authors can obtain accurate se-
lectivity estimations for the produced queries. Un-
fortunately, despite the accurate selectivity estima-
tions, the cost model used to compare the differ-
ent cover-based reformulations is not realistic, as it
assumes that all joins in a CQ are performed us-
ing hash joins, which is highly unlikely, and also it
is assumed that every input relation is completely
scanned. Also, the join order is not taken into con-
sideration at all, something that can have a huge
impact in the cost of the query. As we have dis-
cussed, this is an inherent problem of a system that
operates outside the database engine. The differ-
ence with our method is that we use heuristics that
apply to different execution plans and database en-
gines, and also, at each step of our method, we com-
pare highly relevant queries, where apart from the
relations affected by the combined mapping under
consideration, all other input relations and joins be-
tween them are the same, such that query selectiv-
ity plays the most important role in our decision.
Also, we avoid running the query translation pro-
cess multiple times, whereas in [16] for each differ-
ent query cover, the rewriting, unfolding and esti-
mation process has to be performed independently.
Finally, the authors only consider mappings whose
the body is always a CQ over the relational schema.

Since version 3, the Ontop system has departed
from the usage of partial evaluation of logic pro-
grams for query unfolding. Specifically, it now re-

5http://cgi.di.uoa.gr/~dbilid/experiments-obda/

lies on a query representation which is called in-
termediate query [30], in order to represent both
SPARQL and SQL queries, facilitating the transla-
tion of SPARQL query operators like OPTIONAL
[29] and GROUP BY. Instead, in this work we
concentrate only on CQs over the ontology. We
have experimentally shown that our method per-
forms better on average for CQs in comparison with
the latest Ontop versions. We believe that it is an
interesting topic for future research to also apply
cost-based methods to other operators present in
SPARQL, possibly combining our results with the
line of research carried out in [30, 29].

The work presented by Sequeda et al. [26] is also
relevant, as it uses a cost model in order to mate-
rialize specific views prior to query execution. This
solution in many cases provides efficient query exe-
cution, but incurs expensive preprocessing and also,
using materialized views in the database increases
the database maintenance load, especially for fre-
quently updated tables, as well as the the database
size. Also, it is not in line with the overall OBDA
approach of providing the end user with access to
several underlying data sources, without the need
to modify data, and on a practical level, such access
may not be even possible. In contrast, we compute
specific temporary views during query execution,
when we estimate that this will result in lower exe-
cution cost, without affecting the original database
schema.

Jacques et al. [12] adopt a logic which enables
them to avoid mappings when using an object-
relational back-end and a combination of data com-
pletion and query rewriting. During this process
primary keys are used for object identification, re-
moving the need for duplicate elimination. Also,
the authors use disjointness axioms in the ontology
to further remove the need of duplicate elimination
between unions. Gottlob et al. [8] present query
rewriting and optimization techniques that elimi-
nate redundant atoms during the application of a
resolution based algorithm. To do so, they employ
a method that takes into consideration the tuple-
generating dependencies (TGDs) of the ontological
language they consider, which unlike the DL-Lite
languages, considers atoms of arbitrary arity, thus
it is conceptually closer to the relational model and
does not need separate mappings, so a separate un-
folding phase is not needed.

We have identified redundant processing as a bot-
tleneck in OBDA query processing and we have
proposed solutions to overcome this problem. We

21

System Always Never Heuristic Best (common) Best(Separate)

on
e-t
im
e PostgreSQL 13345 168785 12854 12638 12353

MySQL 281598 - 281685 279522 279265
SystemI 10733 143616 9906 9693 9502
SystemX 20558 27479 8588 8803 7280

qu
ery
-m
ix PostgreSQL 167116 618328 144984 146406 143191

MySQL 1129311 - 1066499 1056659 1056145
SystemI 135790 520408 102724 101984 99989
SystemX 167761 220408 93660 90557 83045

Table 5: Query Results for Different Duplicate Elimination Strategies (Times in sec.)

believe that using cost-based planning is a promi-
nent direction towards OBDA query optimization,
that has not been fully explored yet. In future
work, we plan to incorporate decisions about phys-
ical database design by analyzing the mapping as-
sertions. One more direction regarding future re-
search has to do with duplicate elimination in case
the OBDA system is equipped with query process-
ing capabilities, in other words when it acts as a
mediator. In this setting, along with decisions re-
garding which query fragments should be evaluated
in external databases, one should decide when du-
plicate elimination should be “pushed” to endpoints
or performed by the OBDA processing engine dur-
ing data import.

Acknowledgments

The present work was co-funded by the Euro-
pean Union’s Horizon 2020 research and innova-
tion programme under grant agreement No 825258,
and by the Seventh Framework Program (FP7) of
the European Commission under Grant Agreement
318338.

References

[1] Bilidas, D., Koubarakis, M.: Efficient duplicate elimi-
nation in SPARQL to SQL translation. In: Description
Logics (2018)

[2] Bitton, D., DeWitt, D.J.: Duplicate record elimination
in large data files. ACM Transactions on database sys-
tems (TODS) 8(2), 255–265 (1983)

[3] Bursztyn, D., Goasdoué, F., Manolescu, I.: Teaching
an RDBMS about ontological constraints. Proceedings
of the VLDB Endowment 9(12), 1161–1172 (2016)

[4] Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov,
R., Lanti, D., Rezk, M., Rodriguez-Muro, M., Xiao,
G.: Ontop: Answering sparql queries over relational
databases. Semantic Web 8(3), 471–487 (2017)

[5] Chaudhuri, S., Vardi, M.Y.: Optimization of real con-
junctive queries. In: Proceedings of the twelfth ACM
SIGACT-SIGMOD-SIGART symposium on Principles
of database systems. pp. 59–70. ACM (1993)

[6] Chortaras, A., Trivela, D., Stamou, G.B.: Optimized
query rewriting for OWL 2 QL. In: CADE. vol. 11, pp.
192–206. Springer (2011)

[7] DeWitt, D.J.: The wisconsin benchmark: Past, present,
and future. In: Gray, J. (ed.) The Benchmark Hand-
book for Database and Transaction Systems (2nd Edi-
tion). Morgan Kaufmann (1993)

[8] Gottlob, G., Orsi, G., Pieris, A.: Query rewriting and
optimization for ontological databases. ACM Transac-
tions on Database Systems (TODS) 39(3), 25 (2014)

[9] Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for
owl knowledge base systems. Web Semantics: Science,
Services and Agents on the World Wide Web 3(2), 158–
182 (2005)

[10] Ioannidis, Y.: The history of histograms (abridged).
In: Proceedings of the 29th international conference on
Very large data bases-Volume 29. pp. 19–30. VLDB En-
dowment (2003)

[11] Ives, Z.G., Florescu, D., Friedman, M., Levy, A., Weld,
D.S.: An adaptive query execution system for data inte-
gration. ACM SIGMOD Record 28(2), 299–310 (1999)

[12] Jacques, J.S., Toman, D., Weddell, G.E.: Object-
relational queries over CFD∀−nc knowledge bases: OBDA
for the SQL-literate. In: Description Logics (2016)

[13] Kharlamov, E., Hovland, D., Jiménez-Ruiz, E., Lanti,
D., Lie, H., Pinkel, C., Rezk, M., Skjæveland, M.G.,
Thorstensen, E., Xiao, G., Zheleznyakov, D., Horrocks,
I.: Ontology based access to exploration data at Statoil.
In: International Semantic Web Conference. pp. 93–
112. Springer (2015)

[14] Kikot, S., Kontchakov, R., Zakharyaschev, M.: Con-
junctive query answering with OWL 2 QL. In: Thir-
teenth International Conference on the Principles of
Knowledge Representation and Reasoning (2012)

[15] Lanti, D., Rezk, M., Xiao, G., Calvanese, D.: The NPD
benchmark: Reality check for OBDA systems. In: Proc.
of the 18th Int. Conf. on Extending Database Technol-
ogy (EDBT) (2015)

[16] Lanti, D., Xiao, G., Calvanese, D.: Cost-driven
ontology-based data access. In: The Semantic Web -
ISWC 2017 - 16th International Semantic Web Confer-
ence, Vienna, Austria, October 21-25, 2017, Proceed-
ings, Part I. Lecture Notes in Computer Science, vol.
10587, pp. 452–470. Springer (2017)

[17] Lloyd, J.W.: Foundations of logic programming.

22

Springer Science & Business Media (2012)
[18] Lloyd, J.W., Shepherdson, J.C.: Partial evaluation in

logic programming. The Journal of Logic Programming
11(3-4), 217–242 (1991)

[19] Park, J., Segev, A.: Using common subexpressions to
optimize multiple queries. In: Data Engineering, 1988.
Proceedings. Fourth International Conference on. pp.
311–319. IEEE (1988)

[20] Pérez-Urbina, H., Horrocks, I., Motik, B.: Efficient
query answering for owl 2. The Semantic Web-ISWC
2009 pp. 489–504 (2009)

[21] Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G.,
Lenzerini, M., Rosati, R.: Linking data to ontologies.
In: Journal on data semantics, pp. 133–173. Springer
(2008)

[22] Rodriguez-Muro, M., Kontchakov, R., Zakharyaschev,
M.: Ontology-based data access: Ontop of databases.
In: International Semantic Web Conference. pp. 558–
573. Springer (2013)

[23] Rodríguez-Muro, M., Rezk, M.: Efficient SPARQL-to-
SQL with R2RML mappings. Web Semantics: Science,
Services and Agents on the World Wide Web 33, 141–
169 (2015)

[24] Roy, P., Seshadri, S., Sudarshan, S., Bhobe, S.: Efficient
and extensible algorithms for multi query optimization.
ACM SIGMOD Record 29(2), 249–260 (2000)

[25] Sellis, T.K.: Multiple-query optimization. ACM Trans-
actions on Database Systems (TODS) 13(1), 23–52
(1988)

[26] Sequeda, J.F., Arenas, M., Miranker, D.P.: OBDA:
query rewriting or materialization? in practice, both!
In: International Semantic Web Conference. pp. 535–
551. Springer (2014)

[27] Sequeda, J.F., Miranker, D.P.: Ultrawrap: SPARQL
execution on relational data. Web Semantics: Science,
Services and Agents on the World Wide Web 22, 19–39
(2013)

[28] Swami, A., Schiefer, K.B.: On the estimation of join
result sizes. In: International Conference on Extending
Database Technology. pp. 287–300. Springer (1994)

[29] Xiao, G., Kontchakov, R., Cogrel, B., Calvanese, D.,
Botoeva, E.: Efficient handling of sparql optional for
obda. In: International Semantic Web Conference. pp.
354–373. Springer (2018)

[30] Xiao, G., Lanti, D., Kontchakov, R., Komla-Ebri, S.,
Güzel-Kalaycı, E., Ding, L., Corman, J., Cogrel, B.,
Calvanese, D., Botoeva, E.: The virtual knowledge
graph system Ontop. ISWC 2020 - 19th International
Semantic Web Conference (2020)

Appendix A. NPD Queries 31-34

SELECT DISTINCT ?q ?u
WHERE {
?q : inLithostrat igraphicUnit ?u .
?u rdf : type : Lithostrat igraphicUnit .
}

Listing 1: Query NPD 31

SELECT DISTINCT ?quadrant ?name
WHERE {
?quadrant rdf : type : Quadrant .
?quadrant :name ?name .
}

Listing 2: Query NPD 32

SELECT DISTINCT ? unit ? era
WHERE {
? unit : geochronologicEra ? era .
? unit rdf : type : Lithostrat igraphicUnit .
}

Listing 3: Query NPD 33

SELECT DISTINCT ? wellbore ? discovery ?year
WHERE {
? wellbore rdf : type : Wellbore .
? wel lbore : wellboreForDiscovery ? discovery .
? discovery : discoveryYear ?year
}

Listing 4: Query NPD 34

23

H2020-825258

Appendix B

Queries used in the Invekos and Lucas datasets

D3.7 Software for querying and extreme analytics for big linked geospatial data - version II 55

QUERY01

PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX geor: <http://www.opengis.net/def/rule/geosparql/>
PREFIX strdf: <http://strdf.di.uoa.gr/ontology#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX uom: <http://www.opengis.net/def/uom/OGC/1.0/>

select ?i ?conversion ?l_geom ?i_geom ?dist
where {
<https://ai.di.uoa.gr/lucas/resource/1> <https://ai.di.uoa.gr/
lucas/ontology/hasLC1> ?l_lc1 .
<https://ai.di.uoa.gr/lucas/resource/1> <https://ai.di.uoa.gr/
lucas/ontology/hasLC1_SPEC> ?l_lc1_sp .
?conversion <http://deg.iit.demokritos.gr/lucasLC1> ?l_lc1 .
?conversion <http://deg.iit.demokritos.gr/lucasLC1_spec> ?
l_lc1_sp .
?conversion <http://deg.iit.demokritos.gr/
invekosCropTypeNumber> ?cropNu .
?i <http://ai.di.uoa.gr/invekos/ontology/hasCropTypeNumber> ?
cropNu .
<https://ai.di.uoa.gr/lucas/resource/1> geo:hasGeometry ?
l_geom_id .
?l_geom_id geo:asWKT ?l_geom .
?i geo:hasGeometry ?i_geom_id .
?i_geom_id geo:asWKT ?i_geom .
bind(geof:distance(?l_geom,?i_geom,uom:metre) as ?dist) .
filter(?dist < 10) .
}

QUERY 02

PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX geor: <http://www.opengis.net/def/rule/geosparql/>
PREFIX strdf: <http://strdf.di.uoa.gr/ontology#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX uom: <http://www.opengis.net/def/uom/OGC/1.0/>

select ?i ?conversion ?l_geom ?i_geom ?dist
where {
<https://ai.di.uoa.gr/lucas/resource/1> <https://ai.di.uoa.gr/

lucas/ontology/hasLC1> ?l_lc1 .
<https://ai.di.uoa.gr/lucas/resource/1> <https://ai.di.uoa.gr/
lucas/ontology/hasLC1_SPEC> ?l_lc1_sp .
?conversion <http://deg.iit.demokritos.gr/lucasLC1> ?l_lc1 .
?conversion <http://deg.iit.demokritos.gr/lucasLC1_spec> ?
l_lc1_sp .
?conversion <http://deg.iit.demokritos.gr/
invekosCropTypeNumber> ?cropNu .
?i <http://ai.di.uoa.gr/invekos/ontology/hasCropTypeNumber> ?
cropNu .
<https://ai.di.uoa.gr/lucas/resource/1> geo:hasGeometry ?
l_geom_id .
?l_geom_id geo:asWKT ?l_geom .
?i geo:hasGeometry ?i_geom_id .
?i_geom_id geo:asWKT ?i_geom .
bind(geof:distance(?l_geom,?i_geom,uom:metre) as ?dist) .
}
order by asc(?dist)
limit 1

QUERY 03

PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX geor: <http://www.opengis.net/def/rule/geosparql/>
PREFIX strdf: <http://strdf.di.uoa.gr/ontology#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX uom: <http://www.opengis.net/def/uom/OGC/1.0/>

select ?i ?conversion ?l_geom ?i_geom ?dist
where {
<https://ai.di.uoa.gr/lucas/resource/1> <https://ai.di.uoa.gr/
lucas/ontology/hasLC1> ?l_lc1 .
<https://ai.di.uoa.gr/lucas/resource/1> <https://ai.di.uoa.gr/
lucas/ontology/hasLC1_SPEC> ?l_lc1_sp .
?conversion <http://deg.iit.demokritos.gr/lucasLC1> ?l_lc1 .
?conversion <http://deg.iit.demokritos.gr/lucasLC1_spec> ?
l_lc1_sp .
<https://ai.di.uoa.gr/lucas/resource/1> geo:hasGeometry ?
l_geom_id .
?l_geom_id geo:asWKT ?l_geom .
?i geo:hasGeometry ?i_geom_id .
?i_geom_id geo:asWKT ?i_geom .
bind(geof:distance(?l_geom,?i_geom,uom:metre) as ?dist) .
}

order by asc(?dist)
limit 1

QUERY 04

PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX geor: <http://www.opengis.net/def/rule/geosparql/>
PREFIX strdf: <http://strdf.di.uoa.gr/ontology#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX uom: <http://www.opengis.net/def/uom/OGC/1.0/>

select ?i ?conversion ?l_geom ?i_geom ?dist
where {
<https://ai.di.uoa.gr/lucas/resource/1> <https://ai.di.uoa.gr/
lucas/ontology/hasLC1> ?l_lc1 .
<https://ai.di.uoa.gr/lucas/resource/1> <https://ai.di.uoa.gr/
lucas/ontology/hasLC1_SPEC> ?l_lc1_sp .
?conversion <http://deg.iit.demokritos.gr/lucasLC1> ?l_lc1 .
?conversion <http://deg.iit.demokritos.gr/lucasLC1_spec> ?
l_lc1_sp .
<https://ai.di.uoa.gr/lucas/resource/1> geo:hasGeometry ?
l_geom_id .
?i geo:hasGeometry ?i_geom_id .
?i_geom_id geo:asWKT ?i_geom .
?l_geom_id geo:asWKT ?l_geom .
bind(geof:distance(?l_geom,?i_geom,uom:metre) as ?dist) .
{

select ?dist2
where {
<https://ai.di.uoa.gr/lucas/resource/1> <https://

ai.di.uoa.gr/lucas/ontology/hasLC1> ?l2_lc1 .
<https://ai.di.uoa.gr/lucas/resource/1> <https://

ai.di.uoa.gr/lucas/ontology/hasLC1_SPEC> ?l2_lc1_sp .
?conversion2 <http://deg.iit.demokritos.gr/lucasLC1> ?

l2_lc1 .
?conversion2 <http://deg.iit.demokritos.gr/

lucasLC1_spec> ?l2_lc1_sp .
?conversion2 <http://deg.iit.demokritos.gr/

invekosCropTypeNumber> ?cropNu2 .
?i2 <http://ai.di.uoa.gr/invekos/ontology/

hasCropTypeNumber> ?cropNu2 .
<https://ai.di.uoa.gr/lucas/resource/1> geo:hasGeometry ?

l2_geom_id .

?l2_geom_id geo:asWKT ?l2_geom .
?i2 geo:hasGeometry ?i2_geom_id .
?i2_geom_id geo:asWKT ?i2_geom .
bind(geof:distance(?l2_geom,?i2_geom,uom:metre) as ?

dist2) .
}
order by asc(?dist2)
limit 1

}
filter(?dist <= ?dist2)
}

QUERY 05

PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX geor: <http://www.opengis.net/def/rule/geosparql/>
PREFIX strdf: <http://strdf.di.uoa.gr/ontology#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX uom: <http://www.opengis.net/def/uom/OGC/1.0/>

select ?conversion ?l_lc1 ?l_lc1_sp ?cropNu ?l_geom ?i_geom ?i ?
dist
where {
<https://ai.di.uoa.gr/lucas/resource/1> <https://ai.di.uoa.gr/
lucas/ontology/hasLC1> ?l_lc1 .
<https://ai.di.uoa.gr/lucas/resource/1> <https://ai.di.uoa.gr/
lucas/ontology/hasLC1_SPEC> ?l_lc1_sp .
?conversion <http://deg.iit.demokritos.gr/lucasLC1> ?l_lc1 .
?conversion <http://deg.iit.demokritos.gr/lucasLC1_spec> ?
l_lc1_sp .
?conversion <http://deg.iit.demokritos.gr/
invekosCropTypeNumber> ?cropNu .
?i <http://ai.di.uoa.gr/invekos/ontology/hasCropTypeNumber> ?
cropNu .
<https://ai.di.uoa.gr/lucas/resource/1> geo:hasGeometry ?
l_geom_id .
?l_geom_id geo:asWKT ?l_geom .
?i geo:hasGeometry ?i_geom_id .
?i_geom_id geo:asWKT ?i_geom .
bind(geof:distance(?l_geom,?i_geom,uom:metre) as ?dist) .
{

select ?dist2
where {

<https://ai.di.uoa.gr/lucas/resource/1> <https://
ai.di.uoa.gr/lucas/ontology/hasLC1> ?l2_lc1 .

<https://ai.di.uoa.gr/lucas/resource/1> <https://
ai.di.uoa.gr/lucas/ontology/hasLC1_SPEC> ?l2_lc1_sp .

?conversion2 <http://deg.iit.demokritos.gr/lucasLC1> ?
l2_lc1 .

?conversion2 <http://deg.iit.demokritos.gr/
lucasLC1_spec> ?l2_lc1_sp .

<https://ai.di.uoa.gr/lucas/resource/1> geo:hasGeometry ?
l2_geom_id .

?l2_geom_id geo:asWKT ?l2_geom .
?i2 geo:hasGeometry ?i2_geom_id .
?i2_geom_id geo:asWKT ?i2_geom .
bind(geof:distance(?l2_geom,?i2_geom,uom:metre) as ?

dist2) .
filter(?dist2 < 10) .
}
order by asc(?dist2)
limit 1

}

filter(?dist <= ?dist2)
}

QUERY 06

PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX geor: <http://www.opengis.net/def/rule/geosparql/>
PREFIX strdf: <http://strdf.di.uoa.gr/ontology#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX uom: <http://www.opengis.net/def/uom/OGC/1.0/>

select ?i ?conversion ?l_geom ?i_geom ?dist
where {
<https://ai.di.uoa.gr/lucas/resource/1> <https://ai.di.uoa.gr/
lucas/ontology/hasLC1> ?l_lc1 .
<https://ai.di.uoa.gr/lucas/resource/1> <https://ai.di.uoa.gr/
lucas/ontology/hasLC1_SPEC> ?l_lc1_sp .
?conversion <http://deg.iit.demokritos.gr/lucasLC1> ?l_lc1 .
?conversion <http://deg.iit.demokritos.gr/lucasLC1_spec> ?
l_lc1_sp .
?conversion <http://deg.iit.demokritos.gr/
invekosCropTypeNumber> ?cropNu .

?i <http://ai.di.uoa.gr/invekos/ontology/hasCropTypeNumber> ?
cropNu .
<https://ai.di.uoa.gr/lucas/resource/1> geo:hasGeometry ?
l_geom_id .
?l_geom_id geo:asWKT ?l_geom .
?i geo:hasGeometry ?i_geom_id .
?i_geom_id geo:asWKT ?i_geom .
bind(geof:distance(?l_geom,?i_geom,uom:metre) as ?dist) .
{

select (geof:distance(?l2_geom,?i2_geom,uom:metre) as ?
dist2)

where {
<https://ai.di.uoa.gr/lucas/resource/1> <https://

ai.di.uoa.gr/lucas/ontology/hasLC1> ?l2_lc1 .
<https://ai.di.uoa.gr/lucas/resource/1> <https://

ai.di.uoa.gr/lucas/ontology/hasLC1_SPEC> ?l2_lc1_sp .
?conversion2 <http://deg.iit.demokritos.gr/lucasLC1> ?

l2_lc1 .
?conversion2 <http://deg.iit.demokritos.gr/

lucasLC1_spec> ?l2_lc1_sp .
?conversion2 <http://deg.iit.demokritos.gr/

invekosCropTypeNumber> ?cropNu2 .
?i2 <http://ai.di.uoa.gr/invekos/ontology/

hasCropTypeNumber> ?cropNu2 .
<https://ai.di.uoa.gr/lucas/resource/1> geo:hasGeometry ?

l2_geom_id .
?l2_geom_id geo:asWKT ?l2_geom .
?i2 geo:hasGeometry ?i2_geom_id .
?i2_geom_id geo:asWKT ?i2_geom .
}
order by asc(?dist2)
limit 1

}
filter(10 <= ?dist2)
}
order by asc(?dist)
limit 1

QUERY 07

PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX geor: <http://www.opengis.net/def/rule/geosparql/>
PREFIX strdf: <http://strdf.di.uoa.gr/ontology#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX uom: <http://www.opengis.net/def/uom/OGC/1.0/>

select ?i ?conversion ?l_geom ?i_geom ?dist
where {
<https://ai.di.uoa.gr/lucas/resource/1> <https://ai.di.uoa.gr/
lucas/ontology/hasLC1> ?l_lc1 .
<https://ai.di.uoa.gr/lucas/resource/1> <https://ai.di.uoa.gr/
lucas/ontology/hasLC1_SPEC> ?l_lc1_sp .
?conversion <http://deg.iit.demokritos.gr/lucasLC1> ?l_lc1 .
?conversion <http://deg.iit.demokritos.gr/lucasLC1_spec> ?
l_lc1_sp .
<https://ai.di.uoa.gr/lucas/resource/1> geo:hasGeometry ?
l_geom_id .
?l_geom_id geo:asWKT ?l_geom .
?i geo:hasGeometry ?i_geom_id .
?i_geom_id geo:asWKT ?i_geom .
bind(geof:distance(?l_geom,?i_geom,uom:metre) as ?dist) .
{

select (geof:distance(?l2_geom,?i2_geom,uom:metre) as ?
dist2)

where {
<https://ai.di.uoa.gr/lucas/resource/1> <https://

ai.di.uoa.gr/lucas/ontology/hasLC1> ?l2_lc1 .
<https://ai.di.uoa.gr/lucas/resource/1> <https://

ai.di.uoa.gr/lucas/ontology/hasLC1_SPEC> ?l2_lc1_sp .
?conversion2 <http://deg.iit.demokritos.gr/lucasLC1> ?

l2_lc1 .
?conversion2 <http://deg.iit.demokritos.gr/

lucasLC1_spec> ?l2_lc1_sp .
?conversion2 <http://deg.iit.demokritos.gr/

invekosCropTypeNumber> ?cropNu2 .
?i2 <http://ai.di.uoa.gr/invekos/ontology/

hasCropTypeNumber> ?cropNu2 .
<https://ai.di.uoa.gr/lucas/resource/1> geo:hasGeometry ?

l2_geom_id .
?l2_geom_id geo:asWKT ?l2_geom .
?i2 geo:hasGeometry ?i2_geom_id .
?i2_geom_id geo:asWKT ?i2_geom .

filter(?dist2 < 10)
}
order by asc(?dist2)
limit 1

}
filter(?dist < ?dist2)
}

QUERY 08

PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX geor: <http://www.opengis.net/def/rule/geosparql/>
PREFIX strdf: <http://strdf.di.uoa.gr/ontology#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX uom: <http://www.opengis.net/def/uom/OGC/1.0/>

SELECT * WHERE {
 ?i <http://earthanalytics.eu/fs/ontology/hasCropTypeNumber> ?
nu.
 ?i geo:hasGeometry ?geomI.
 ?geomI geo:asWKT ?wktI.
 ?r <http://ai.di.uoa.gr/eu-hydro/ontology/hasRiver_Net_p> ?o.
 ?o geo:hasGeometry ?geom.
 ?geom geo:asWKT ?wkt.
 BIND(geof:distance(?wktI, ?wkt, uom:metre) as ?dist).
 FILTER(?dist < 100).
}

QUERY 09

PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX geor: <http://www.opengis.net/def/rule/geosparql/>
PREFIX strdf: <http://strdf.di.uoa.gr/ontology#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX uom: <http://www.opengis.net/def/uom/OGC/1.0/>

select ?conversion ?l_lc1 ?l_lc1_sp ?l_geom ?i_geom ?i ?dist
where {
<https://ai.di.uoa.gr/lucas/resource/1> <https://ai.di.uoa.gr/
lucas/ontology/hasLC1> ?l_lc1 .
<https://ai.di.uoa.gr/lucas/resource/1> <https://ai.di.uoa.gr/
lucas/ontology/hasLC1_SPEC> ?l_lc1_sp .
?conversion <http://deg.iit.demokritos.gr/lucasLC1> ?l_lc1 .
?conversion <http://deg.iit.demokritos.gr/lucasLC1_spec> ?
l_lc1_sp .
<https://ai.di.uoa.gr/lucas/resource/1> geo:hasGeometry ?
l_geom_id .
?l_geom_id geo:asWKT ?l_geom .

?i geo:hasGeometry ?i_geom_id .
?i_geom_id geo:asWKT ?i_geom .
bind(geof:distance(?l_geom,?i_geom,uom:metre) as ?dist) .
filter(?dist < 10)
{

select ?dist2
where {
<https://ai.di.uoa.gr/lucas/resource/1> <https://

ai.di.uoa.gr/lucas/ontology/hasLC1> ?l2_lc1 .
<https://ai.di.uoa.gr/lucas/resource/1> <https://

ai.di.uoa.gr/lucas/ontology/hasLC1_SPEC> ?l2_lc1_sp .
?conversion2 <http://deg.iit.demokritos.gr/lucasLC1> ?

l2_lc1 .
?conversion2 <http://deg.iit.demokritos.gr/

lucasLC1_spec> ?l2_lc1_sp .
?conversion2 <http://deg.iit.demokritos.gr/

invekosCropTypeNumber> ?cropNu2 .
?i2 <http://ai.di.uoa.gr/invekos/ontology/

hasCropTypeNumber> ?cropNu2 .
<https://ai.di.uoa.gr/lucas/resource/1> geo:hasGeometry ?

l2_geom_id .
?l2_geom_id geo:asWKT ?l2_geom .
?i2 geo:hasGeometry ?i2_geom_id .
?i2_geom_id geo:asWKT ?i2_geom .
bind(geof:distance(?l2_geom,?i2_geom,uom:metre) as ?

dist2) .
}
order by asc(?dist2)
limit 1

}
filter(?dist < ?dist2)
}

QUERY 10

PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX geor: <http://www.opengis.net/def/rule/geosparql/>
PREFIX strdf: <http://strdf.di.uoa.gr/ontology#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX uom: <http://www.opengis.net/def/uom/OGC/1.0/>

select ?conversion ?l_lc1 ?l_lc1_sp ?l_geom ?dist
where {

<https://ai.di.uoa.gr/lucas/resource/1> <https://ai.di.uoa.gr/
lucas/ontology/hasLC1> ?l_lc1 .
<https://ai.di.uoa.gr/lucas/resource/1> <https://ai.di.uoa.gr/
lucas/ontology/hasLC1_SPEC> ?l_lc1_sp .
?conversion <http://deg.iit.demokritos.gr/lucasLC1> ?l_lc1 .
?conversion <http://deg.iit.demokritos.gr/lucasLC1_spec> ?
l_lc1_sp .
<https://ai.di.uoa.gr/lucas/resource/1> geo:hasGeometry ?
l_geom_id .
?l_geom_id geo:asWKT ?l_geom .
?i geo:hasGeometry ?i_geom_id .
?i_geom_id geo:asWKT ?i_geom .
bind(geof:distance(?l_geom,?i_geom,uom:metre) as ?dist) .
{

select (geof:distance(?l2_geom,?i2_geom,uom:metre) as ?
dist2)

where {
<https://ai.di.uoa.gr/lucas/resource/1> <https://

ai.di.uoa.gr/lucas/ontology/hasLC1> ?l2_lc1 .
<https://ai.di.uoa.gr/lucas/resource/1> <https://

ai.di.uoa.gr/lucas/ontology/hasLC1_SPEC> ?l2_lc1_sp .
?conversion2 <http://deg.iit.demokritos.gr/lucasLC1> ?

l2_lc1 .
?conversion2 <http://deg.iit.demokritos.gr/

lucasLC1_spec> ?l2_lc1_sp .
<https://ai.di.uoa.gr/lucas/resource/1> geo:hasGeometry ?

l2_geom_id .
?l2_geom_id geo:asWKT ?l2_geom .
?i2 geo:hasGeometry ?i2_geom_id .
?i2_geom_id geo:asWKT ?i2_geom .
}
order by asc(?dist2)
limit 1

}
filter(10 <= ?dist2)
}
order by asc(?dist)
limit 1

	Introduction
	An Overview of the Strabo2 System for Distributed GeoSPARQL Processing
	Improvements in Semantic Data Storage and Loaders
	Data Storage Design Schemes and Techniques
	Design Schemes - Loaders
	Scheme 1 - Loader 1
	Scheme 2 - Loader 2
	Loader Benchmarks
	Loader Source Code

	Improvements in Query Executor
	Using Persistent Spatial Indexing and Partitioning
	Caching Partitioned Thematic Tables
	Caching Qualitative Spatial Relations Using JedAI-Spatial
	Query Optimization
	Handling Redundancy During Query Rewriting
	Execution Order of Thematic and Spatial Joins and Filters

	Experimental Results
	Experiments With Datasets From Food Security Use-Case
	Experiments With Synthetic Dataset of Geographica2 Benchmark

	Distributed Endpoint
	Implementation of A SPARQL Endpoint in Hopsworks
	GeoSpark Function Registration using Apache Livy

	Summary and Future Work
	Appendix A
	Handling redundant processing in OBDA query execution over relational sources.
	Appendix B
	Queries used in the Invekos and Lucas datasets

