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ABSTRACT 

Water is one of the most precious resources on this planet. 

With climate change, weather conditions, water availability 

and food security show ever higher variability. In this paper, 

the reaction of the different crop types in the Austrian part of 

the Danube basin to the extreme drought during 2018 in terms 

of water stress and water use efficiency are shown. For this, 

crop types were classified using deep learning methods and 

Sentinel-2 data were analyzed and combined with crop 

growth modelling to derive the water stress levels of the 

different crops. 

Index Terms— Food Security, Thematic Exploitation 
Platform, cloud processing, crop type classification, 

biophysical parameter retrieval, water stress, water use 

efficiency, sustainable food production. 

1. INTRODUCTION 

Austria – and really much of Central Europe – was hit with a 

spring drought in 2018 that was following an already too dry 

2017. Not unexpectedly, cereal harvests were disappointing, 

bringing in an average of 7% less than in the 5 years before 

[1]. Climate conditions that we are likely bound to see more 

often in Europe as climate change makes weather extremes 

more likely and temperature records in late winter and early 

spring keep being set.  

These changes in environmental conditions are one of the 

most challenging issues of this century as they directly affect 

agriculture and with it our food security. Measures to stabilize 

and sustainably heighten the efficiency of agricultural 

production need a new level of information quality. This is 

where this study has its target: Set within the Horizon 2020 

project ExtremeEarth, the issues of water availability and 

water demand for agricultural production are addressed. The 

goal is to support irrigation management decisions by 

combining big data EO analysis with water balance and crop 

growth modelling within European pilot catchments.  
In this paper, a system architecture for the automatic water 

availability mapping is proposed. Experiments have been 

carried out in Austria for the year 2018, however, the 

proposed processing chain can be used to produce multi-year 

results for larger study areas. Austria, with its location in the 

center of Europe and the Upper part of the Danube Basin and 

its different geographic regions from the cold and humid Alps 

to the warm and more arid regions in the East, is a perfect 

example of the challenges faced by agriculture. Big data 

Earth Observation (EO) analysis can offer a unique insight 

into large scale processes and challenges. Within the study, 
we used Cloud Computing and European platform 

infrastructures to pre-process dense time series of optical 

multispectral Sentinel-2 (S2) data. Fig. 1 shows the block-

scheme of the proposed method which takes in the S2 big data 

and a publicly available thematic product and produces as 

output the water demand and water availability maps to 

derive the water stress levels of the different crops. First, the 

S2 are pre-processed to generate the plant parameter maps 

and the harmonized TS of 12 monthly composites. Then, crop 

type and crop boundary maps are produced using a 



multitemporal deep learning model trained using the 

harmonized TS of S2 images and the publicly available 

thematic product. Finally, the water-stress the different crops 

suffered is modelled and the Water-Use-Efficiency (WUE) is 

calculated using physically-based models for crop parameter 

retrieval and crop growth modelling. This step is fundamental 

towards understanding the needs and demands of water 

management in the Danube Basin in the future.     

2. METHODS 

2.1. Satellite Data Pre-Processing 

Pre-processing of the S2 imagery used in this study has been 

done on the Food Security TEP, the ESA-supported Thematic 

Exploitation Platform for agriculture and aquaculture [2]. Its 

infrastructure allows, among many other data sets, also direct 

access to all S2 satellite imagery. This also includes older 

scenes, which are not available anymore through the 

Copernicus Rolling Archive but stored within the Copernicus 

Long-Term-Archive and therefore have a long access time. 
Scalable resources for processing, data handling and storage 

help to overcome the challenges of Big Data for large-area 

EO applications.  

Within the ExtremeEarth project, a federation with the deep 

learning platform Hopsworks [3] is being established to allow 

machine and deep learning approaches for agriculture on the 

Food Security TEP in the future. 

Dense time series of multi-spectral S2 data are the input 

needed for both the crop type classification and water stress 

and water-use-efficiency calculations. Especially for the deep 

learning model, highest quality atmospheric corrections, 
including high accuracy cloud and cloud shadow masking as 

well as cirrus correction are necessary. This is offered by 

VISTA’s image processing chains (VIAs), which are 

implemented as processors on the Food Security TEP. 

Starting from S2 Level 1b data, they comprise sophisticated 

methods on all necessary pre-processing steps (atmospheric 

correction incl. cirrus correction, cloud and cloud shadow 

masking, land cover classification for snow, water, 

vegetation, open soils) as well as a crop-type independent 

derivation of plant physiological parameters [4], so that time 

series of high-quality atmospherically corrected multispectral 
S2 data can be delivered for the deep learning from the Food 

Security TEP. 

Finally, the atmospherically corrected images are 

preprocessed to generate a Time Series (TS) of 12 monthly 

composites per tile. Hence, TS acquired over different tiles 

are made up of images acquired on different dates and have 

different lengths (different temporal sampling). Moreover, 

they are noisy due to the presence of clouds at irregular 

intervals. To achieve accurate and consistent crop type 

mapping at large-scale, we consider a pixel composite 

approach that collapses the optical images acquired within 

each month down to a single image. This is done by a 
statistic-based approach that computes the median value for 

each pixel [5], thus providing a harmonized TS from the 

temporal and radiometric view point across tiles. 

2.2. Deep Learning Crop Type Classification 

To successfully train a deep learning model, very large 

training datasets are required. From the operational viewpoint 

this goal is not trivial, since the collection of field data or 

manually annotated samples is demanding at large scale. To 

solve this problem, we consider the publicly available 2018 

Austrian crop type map, which is based on farmer’s 

declarations collected by surveys within the subsidy 

application process in the context of the Common 

Agricultural Policy. An automatic Machine Learning (ML)-

based procedure has been defined to identify pure spectral 

pixels having the highest probability to be correctly 
associated to their labels in an automatic and unsupervised 

way [6]. The obtained dataset is made up of more than 1 

million of labeled units and presents a detailed classification 

scheme of 16 crop categories. A stratified random sampling 

strategy is applied to select labeled units per crop type 

proportional to the number of fields present in the study area. 

Please note that while the 2018 Austrian crop type map can 

be used to perform experiments at country scale for one 

specific year, the deep learning model trained with the 

extracted training set can be used to classify a study area 

larger than the Austrian country and for multiple years. 
To accurately model the phenological characteristics of 

the different crop types, we train a recurrent deep learning 

architecture from scratch using the large training dataset. The 

model used is a Long-Short Term Memory (LSTM) made up 

of three layers, a fully connected layer and a softmax layer, 

having 200, 125 and 100 hidden units for the first, second and 

third layer, respectively. The hyper-parameters of the LSTM 

are selected according to the standard grid-search approach 

by testing all combinations of the number of network layers  

{2,3,4} and the number of cells per layer {100, 125, 200, 225, 

300}. The cross-entropy loss is evaluated at each training step 

by comparing the predicted and the real class probabilities. 
The fine-tuning of the model weights is carried out by back 

propagating the loss through the network layers as gradient. 

The RMSProp optimizer is considered [7]. The initial 

learning rate and the weight decay are set equal to 10-3 to 0.4, 

respectively. The deep learning architecture is implemented 

in the Hops data platform, the Big Data and Artificial 

Intelligent (AI) platform for the development of scalable 

Deep Learning models [8].  

2.3. Water Demand Modelling with PROMET 

Based on the crop type classification a representative sample 

of pixels (355000) is distributed over the study area of 83.879 

km². Samples are located with distance from field boundaries 

or roads to guarantee pure crop information. For each crop, 

the development of the leaf area, represented by the LAI, is 

retrieved by inversion of the pre-processed S2 time series 
(bottom of atmosphere reflectance values), for 15 tiles 



covering 100 x 100 km each, using the radiative transfer 

model SLC [9]. The LAI is then assimilated into the crop 

growth model PROMET [10]. The physically-based agro-

hydrological model allows to simulate e.g. photosynthesis, 

evapotranspiration, soil moisture, biomass increase, 

phenological development, and crop water stress in an hourly 

temporal resolution. Yield in t/ha and water use efficiency 

(WUE) in kg yield/m³ evapotranspiration are then derived for 

a crop season. The model is forced by meteorological 

parameters (precipitation, air temperature, humidity, 
radiation and wind speed). Those datasets are extracted from 

ERA5 reanalysis data (e.g. available from C3S [11]) and 

made available for the model. 

Crop water stress is indicated as soon as photosynthesis 

is limited by water shortage and is displayed as a normalized 

index ranging between 0 (max. stress) and 1 (no stress). WUE 

links yield with water loss through the plant (total 

evapotranspiration) during the vegetation period [12]. 

Regional differences can be seen both in soil moisture 

development and crop water stress over time. Severe crop 

water stress is visible in Upper Austria in May and June as 
precipitation was not able to reach deeper soil layers resulting 

in constantly decreasing soil moisture (Fig. 2). 

3. RESULTS 

3.1. Crop Classification Accuracy  

To assess the quality of the crop type maps, we validate the 

results obtained considering: (1) the Austrian crop type map, 

and (2) the 2018 Land Use and Cover Area frame Statistical 

survey (LUCAS) database [13]. To check the results obtained 
on the Austrian crop type map, we considered the samples 

extracted from tile T33UVP, not included in the training set. 

This condition allows us to have statistically independent 

validation. For the LUCAS validation, only the crop types 

present in the database were considered.  

The results are evaluated considering the Fscore (F1%) 

and the Overall Accuracy (OA%) (Tab. 1). While on the 

LUCAS database the proposed LSTM achieves an average 

F1% of 77.57% with an OA% of 88.99%. Similarly, on the 

Austrian crop type map the proposed LSTM obtains an 

average F1% of 86.03% with an OA% of 91.26%. 

3.2. Water demand simulation results 

The spatially and temporally distributed PROMET results 

allow an explicit analysis of different growing conditions for 

the crops in the extreme year of 2018. While the northern part 
of Upper Austria suffers from drought in the spring months 

March - May, Styria shows a strong precipitation surplus. In 

the summer months June - August, the regions received 

almost normal precipitation again. 

The WUE results for Winter Wheat are given in Fig. 3. 

The limited water availability in Upper Austria in spring also 

results in a lower WUE. In contrast, in Styria, the slightly 

increased amount of precipitation in spring results in a good 

efficiency to build up biomass. Higher water availability 

during the early season leads to increased biomass production 

during the entire season. Findings for Vorarlberg and Tyrol 

have limited relevance due to their limited acreage. 

Based on the detailed crop type mapping not only 

regional differences can be analyzed, but also crop specific 

reactions on water availability. In Tab. 2 the number of days 

with crop water stress is shown for various crops in Austria. 

 

 

Fig 2: Modelled soil moisture in three soil depths and crop water stress 

from March to August 2018 for example regions Upper Austria (top) 

and Styria (bottom). 

Table 1: Crop type classification results obtained on tile T33UVP and 

the LUCAS database. The overall accuracy (OA%) and the Fscore 

(F1%) are reported. 

  T33UVP LUCAS 

  
#Sampl

es  
F1% 

#Sampl

es  
F1% 

 Legumes 2031 88.33 - - 

 Grassland 15080 95.66 2756 95.07 

  Maize 15001 99.34 467 94.64 

  Potato 4015 87.98 44 88.89 

 Sunflower 240 78.65 31 88.52 

  Soy 10712 96.22 104 93.09 

 Barley 15001 90.29 219 78.22 

 Winter Caraway 577 59.45 - - 

 Rye 9701 79.75 70 52.83 

 Rapeseed 5086 96.98 59 90.60 

 Beet 4212 97.20 40 93.98 

 Spring Cereals 11987 93.13 - - 

 Winter Wheat 15001 95.85 372 81.54 

 Triticale 14363 75.77 61 31.15 

 Perm. Plantations 411 55.98 22 18.26 

 OA%  91.26  88.99 



 

Fig 3: Regional overview of simulated WUE [kg/m³] and deviation from 

mean spring precipitation (Mar-May) 2001-2020 [%] for the main crop 

winter wheat.  

Table 2: Number of days with crop water stress in 2018 and acreage 

for different crops in Austria, assuming that crops are not irrigated. 

 

Giving also the total area of the different crops in 
Austria, it can be reported that for most of the arable land 

water shortage and negative effects of plant growth had 

occurred. Especially for the main crop corn, a sum (mean 

over all monitored parcels) of 46 days was calculated. But 

also other relevant crops suffered from water stress if not 

irrigated. Assuming a daily water requirement per crop and 

area, the total amount of needed water can be derived in a 

next step for all classified crop types. With PROMET, it is 

also possible to simulate the yield and the effect of dry years 

and water stress on the harvest volume. 

4. CONCLUSIONS & OUTLOOK 

The presented work gives a small example of the capabilities 

of solution driven methods of water demand calculations 

making use of S2 and crop growth modelling. Using EO (Big) 

Data and DL to retrieve detailed crop type information and 
local phenological and biomass development, then feeding 

the information into the physical model, enabled us to qualify 

and quantify the water stress of a variety of crops on farm and 

regional level in Austria for the extreme year 2018. During 

Extreme Earth, the presented methods will be extended to 

more seasons and regions. In a next step, the study area will 

be extended to comprise the Danube catchment up to 

Komarno (SK) and the year 2019, using the already trained 

model to derive crop type in the adjacent area and years, 

where no training data are available. Using both short term 

and mid-season weather forecasts, also predictive analyses of 

water stress can be calculated. In combination with water 

availability calculations (integrating the hydrological cycle of 

the catchments) the water demand calculations will lead to 

being able to give irrigation policy advice, suitable on local 

to regional level. EO derived crop information has proven its 

potential to support and improve crop and water related 

challenges in future farming and food security management. 
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